




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
最短路径问题教学设计课题:最短路径问题 教材分析教学目标:1. 能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想2. 能做出一个图形经轴对称变化后的图形。3. 能利用轴对称变换解决日常生活中的实际问题。4. 培养学生的探究、归纳、分析、解决问题的能力。 重点难点:重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.难点:在实际题目中会运用最短路径问题。学情分析学生水平,差异特征, 学生能力。1、学生已学习过研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”以及“三角形的第三边大于另两边之差,小于另两边之和”等的问题.2、一直以来学生对于网络环境下的几何主题探究都十分的感兴趣,学习投入程度大。他们观察、操作、猜想能力较强,但演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、结密性、灵活性比较欠缺,自主探究和合作学习能力也需要在课堂教学中进一步加强和引导。3,、学生有较强的好奇心,在学习上有较强的求知欲望,但注意力容易不集中。学生学习基础一般,在数学问题的提出和解决上有一定的方法,但不够深入和全面,需要教师的引导和帮助。学生具有一定的探究精神和合作意识,能在亲身的经历体验中获取一定的数学新知识,但在数学的说理上还不规范,几何演绎推理能力有待加强。情感与态度进一步培养好奇心和探究心理,更进一步体会到数学知识在生活中。教学资源学具:网络教室及作图工具。教具:黑板、粉笔、网络教室及作图工具教学策略利用教学资源网站,通过创设具有启发性的、学生感兴趣的、有助自主学习和探索的问题情境,使学生在活动丰富、思维积极的状态中进行探究学习,组织好合作学习,并对合作过程进行引导,使学生朝着有利于知识建构的方向发展。教 学 过 程教师活动学生活动一 复习引入已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。(连接AB,线段AB与直线L的交点P ,就是所求。) 二探索新知如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短? 像这样我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”。问题1 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:看图:从A 地出发,到一条笔直的河边l 饮马,然后到B 地到河边什么地方饮马可使他所走的路线全最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题这个问题后来被称为“将军饮马 问题”你能将这个问题抽象为数学问题吗? 追问1,这是一个实际问题,你打算首先做什么?(将A,B 两地抽象为两个点,将河l 抽象为一条直 线 )追问2你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗? (1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和; BAlC(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点设C 为直线上的一个动点,上 面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小(如图) 问题2 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB的和最小?追问1,对于问题2,如何将点B“移”到l 的另一侧B处,满足直线l 上的任意一点C,都保持CB 与CB的长度相等? 追问2你能利用轴对称的有关知识,找到上问中符合条件的点B吗? 师讲解做法: 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小? 作法:(1)作点B 关于直线l 的对称点B;(2)连接AB,与直线l 相交于点C则点C 即为所求 问题3你能用所学的知识证明AC +BC最短吗?证明:如图,在直线l 上任取一点C(与点C 不重合),连接AC,BC,BC由轴对称的性质知, BC =BC,BC=BC AC +BC = AC +BC = AB, AC+BC = AC+BC追问1,,证明AC +BC 最短时,为什么要在直线l 上任取一点C(与点C 不重合),证明AC +BC AC+BC?这里的“C”的作用是什么? 答:若直线l 上任意一点(与点C 不重合)与A,B 两点的距离和都大于AC +BC,就说明AC + BC 最小 三运用新知练习如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返 回P 处,请画出旅游船的最短路径。基本思路:由于两点之间线段最短,所以首先可连接PQ,线段PQ 为旅游船最短路径中的必经线路将河岸抽象为一条直线BC,这样问题就转化为“点P,Q 在直线BC 的同侧,如何在BC上找到一点R,使PR与QR 的和最小”练习2:(找自信我一定能行) 问题:如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短 四归纳小结同学们谈谈这节课运用了哪些数学知识,你们学到了什么?1、两点之间,线段最短的知识在生活中的运用2、轴对称知识在生活中的运用3、五布置作业:教科书66面12题。学生思考学生思考,并在草稿纸上画图,看是否可以确定最短路线。学生在老师的引导下思考。学生在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民法遗产继承课件
- 民法总则全文课件
- 初中会考试卷及答案解析
- 亳州初二会考试卷及答案
- 医疗器械行业新质生产力发展
- 民族风少女课件
- 安全生产定义解析讲解
- 线上推广活动方案
- 《统计学-SPSS和Excel实现》(第9版)课件 第5章 参数估计
- 民族自治区域课件
- saas货运管理办法
- 2025新疆生产建设兵团草湖项目区公安局面向社会招聘警务辅助人员考试参考试题及答案解析
- 2026届广东省广州市高三上学期8月调研考试语文试题(含答案)
- 江苏省南通市如皋市2025-2026学年高三上学期开学考试数学试卷
- 2025年高一语文开学第一课指导课件
- 2025年事业单位工勤技能-河北-河北计算机操作员二级(技师)历年参考题库含答案解析(5套)
- 社会资本测量方法-洞察及研究
- 2025年江西省公安机关人民警察特殊职位招录考试(网络安全)历年参考题库含答案详解(5卷)
- 医院副高职称评审汇报
- 肿瘤放疗并发症综合防治
- 口腔医疗风险管理实施方案
评论
0/150
提交评论