已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三讲 几何之立体图形 教学目标立体图形,主要考点集中在不规则形体的表面积与体积计算。其中有自成一类的“染色问题”,也是经常见到的“几何奥数题”。小学阶段,我们除了学习平面图形外,还认识了一些简单的立体图形,如长方体、正方体(立方体)、直圆柱体,直圆锥体、球体等,并且知道了它们的体积、表面积的计算公式,归纳如下。 正方体:我们也可以称其为立方体,它是一种特殊的长方体,它的六个面都是正方形如果它的棱长为,那么可得:正方体的表面积:正方体的体积: 长方体:若长方体的长、宽、高分别为,那么可得:长方体的表面积:长方体的体积: 圆柱体:如右图,圆柱体的底面是圆,其半径为;圆柱体的侧面展开图是一个长方形,长方形的宽相当于圆柱体的高,长相当于圆柱体的底面周长;圆柱体的表面积:圆柱体的体积: 圆锥体:如右图,圆锥体的底面是圆,其半径为;圆锥体的侧面展开图是一个扇形; 圆锥体的体积: 球体:在数学竞赛中,有许多几何趣题,解答这些趣题的关键在于精巧的构思和恰当的设计,把形象思维和抽象思维结合起来。 想 挑 战 吗?(06年武汉明心数学挑战赛)如右图,两个人正在为一个开口为正方形的长方体容器中是否正好装了一半水而争吵请你设计一种方案,不用其他任何工具与设备,并且不能把水倒出来而判断出容器中的水是否正好装了一半教师版答案提示:如下图,将长方体容器如图那样倾斜,使一端的水面刚好到容器口的棱A处,水平面的另一端刚好在棱B处时,容器内正好装了一半水如果不符合上述情况则容器内装的水就不是一半如图是容器里的水正好装一半,图和图则不是,图大于一半,图小于一半 立体图形的表面积边长为1厘米的正方体,如图这样层层重叠放置,那么当重叠到第5层时,这个立体图形的表面积是多少平方厘米? 分析:图形所含块数的规律:第1层1块,第2层3块,第3层6块,第4层10块,第5层15块,依次增加2、3、4、5,当重叠到第5层时,该立体图形的上下、左右、前后方向的表面面积都是15平方厘米,该图形的总表面积为90立方厘米。【例1】 有两个圆柱体的零件,高l0厘米,底面直径是6厘米,零件的一端有有一个圆柱体的零件,高l0厘米,底面直径是6厘米,零件的一端有一个圆柱形直孔,如图,圆孔直径是4厘米,孔深5厘米,如果将这个零件接触空气部分涂上防锈漆,一共要涂多少平方厘米?(): 观察可知涂漆部分包括圆柱体的外表面,以及圆孔的内表面零件的上、下底面:,零件的外侧面:零件的内侧面:,零件涂防锈漆部分为:。【巩固】 右图是一顶帽子。帽顶部分是圆柱形,用黑布做;帽沿部分是一个圆环,用白布做。如果帽顶的半径、高与帽沿的宽都是厘米,那么哪种颜色的布用得多?分析:一样多。黑布:,白布:。【例2】 用铁皮做一个如图所示的工件(两端不封闭),需要铁皮多少平方厘米? ()分析:工件既不是圆柱也不是圆锥,不是我们常见的规则几何图形,因此要考虑如何将此几何体转化为熟悉的常见几何体如下图,再取一个同样的工件,两个工件拼在一起,可以拼成一个规则的圆柱体,则一个工件的侧面积是此圆柱侧面积的一半圆柱的高为:,圆柱的侧面积为:,一个工件需铁皮:(平方厘米)在解决不规则立体图形的问题时,关键是先将其转化为规则的立体图形,然后才能利用已经掌握的公式、性质进行解题其实这个思想我们在春季班就已经接触到了。【巩固】 (五年级春季所学相关题目)(07年希望杯培训试题)一个底面为正方形的长方体木块被锯掉一部分,变成如右图所示的六面体ABCD-EFGH,其中最长的边DH=8厘米,最短的边AB=BC=CD=DA=BF=4厘米,那么这个六面体的体积是多少 立方厘米?分析:42这个六面体的体积是长4厘米,宽4厘米,高12厘米的长方体体积的一半,即44122=96(立方厘米).【拓展】 (05年华罗庚金杯)如图1是一个直三棱柱的表面展开图,其中,灰色和黑色的部分都是边长等于1的正方形问:这个直三棱柱的体积是多少? 分析:如图2,这个直三棱柱是棱长为1的正方体沿一条对角线切割得到的直三棱柱体正方体的体积是1,这个直三棱柱的体积是正方体体积的一半,体积是【例3】 (迎春杯数学邀请赛)一个正方体的表面积为54平方厘米,如果一刀把它切成两个长方体,那么,这两个长方体表面积的和是多少平方厘米?分析:已知正方形的表面积为54平方厘米,那么这个正方形每一个侧面的面积为546=9(平方厘米)一刀切成两个长方体后,这两个长方体的表面积之和比原来正方形表面积增加了92=18(平方厘米)因此,所求的两个长方体的表面积之和为:54+18=72(平方厘米)【前铺】 如右图,正方形ABCD的边长是6厘米,过正方形内的任意两点画直线,可把正方形分成9个小长方形。这9个小长方形的周长之和是多少厘米?分析:从总体考虑,在求这9个小长方形的周长之和时,AB、BC、CD、AD这四条边被用了1次,其余四条线被用了2次,所以9个小长方形的周长之和是:46+426=72(厘米).【前铺】 (五年级春季所学相关思路的题目)一个正方体形状的木块,棱长为1米,沿着水平方向将它锯成3片,每片又按任意尺寸锯成4条,每条又按任意尺寸锯成5小块,共得到大大小小的长方体60块.问这60块长方体表面积的和是多少平方米?分析 原来的正方体有六个外表面,每个面的面积是111(平方米),无论后来锯成多少块,这六个外表面的6平方米总是被计入后来的小木块的表面积的.再考虑每锯一刀,就会得到两个1平方米的表面,现在一共锯了:2+3+49(刀),一共得到18平方米的表面.因此,总的表面积为:6(2+34)224(平方米)。【例4】 (05年清华附培训试题)将一个表面积涂有红色的长方体分割成若干个棱长为1厘米的小正方体,其中一面都没有红色的小正方形只有3个,求原来长方体的表面积是多少平方厘米?分析:长:3+1+1=5厘米;宽:1+1+1=3厘米;高:1+1+1=3厘米;所以原长方体的表面积是:(35+35+33)32=78平方厘米。【前铺】 (五年级春季所学相关思路的题目)右图是456正方体,如果将其表面涂成红色,那么其中一面、二面、三面被涂成红色的小正方体各有多少块?分析:三面涂红色的只有8个顶点处的8个立方体;两面涂红色的在棱长处,共(4-2)4+(5-2)4+(6-2)4=36块;一面涂红的表面中间部分:(4-2)(5-2)2+(4-2)(6-2)2+(5-2)(6-2)2=52块。没涂红色的小方块有:(4-2)(5-2)(6-2)=24块。注意帮助孩子们理解,而后可以总结规律。【拓展】 (五年级春季所学相关思路的题目)右图是由27块小正方体构成的 333的正方体。如果将其表面涂成红色,则在角上的8个小正方体有三面是红色的,最中央的小方块则一点红色也没有,其余18块小方块中,有12个两面是红的,6个一面是红的。这样两面有红色的小方块的数量是一面有红色的小方块的两倍,三面有红色的小方块的数量是一点红色也没有的小方块的八倍。问:由多少块小正方体构成的正方体,表面涂成红色后会出现相反的情况,即一面有红色的小方块的数量是两面有红色的小方块的两倍,一点红色也没有的小方块是三面有红色的小方块的八倍?分析:对于由n3块小正方体构成的nnn正方体,三面涂有红色的有8块,两面涂有红色的有12(n2)块,一面涂有红色的有6(n2)2块,没有涂色的有(n-2)3块。由题设条件,一点红色也没有的小方块是三面涂有红色的小方块的八倍,即(n-2)388,解得n6。 立体图形的体积【例5】 (05年华罗庚金杯)如图,一个圆锥形容器甲与一个半球形容器乙,它们圆形口的直径与容器的高的尺寸如图所示,若用甲容器取水来注满乙容器,问:至少要注水多少次?分析:圆锥形容器甲的容积是:,半球形容器乙的容积是:,所以至少要注水8次【例6】 一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的柱形容器中,水面高多少厘米7分析:设底面积为S,圆柱体内水面的高为h,根据题意有:【拓展】 如右图所示,圆锥形容器内装的水正好是它容积的,水面高度是容器高度的几分之几?分析:设水面高度是容器高度的倍,则水面半径也是容器底面半径的倍。根据题意得到:,【例7】 皮球掉进一个盛有水的圆柱形水桶中。皮球的直径为15厘米,水桶底面直径为60厘米。皮球有的体积浸在水中(见右图)。问皮球掉进水中后,水桶中的水面升高了多少厘米?分析:皮球的体积是:(立方厘米);皮球浸在水中的部分是:(立方厘米);水桶的底面积是:(平方厘米);水面升高的高度是:(厘米)。【例8】 (06年北京五中实验班选拔)一只装有水的圆柱形玻璃杯,底面积是80平方厘米,水深8厘米。现将一个底面积是16平方厘米的长方体铁块竖放在水中后,仍有一部分铁块露在外面。现在水深多少厘米?分析:根据等积变化原理:用水的体积除以水的底面积就是水的高度。(法1):808(80一16) =64064=10(厘米);(法2):设水面上升了厘米。根据上升部分的体积=浸人水中铁块的体积列方程为:,解得:,8+2=10(厘米)。【巩固】 有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中。钢材从水桶里取出后,桶里的水下降了6厘米。这段钢材有多长?分析: 根据题意可知,圆柱形钢材的体积等于桶里下降部分水的体积,因为钢材底面半径是水桶底面半径的,即,钢材底面积就是水桶底面积的。根据体积一定,圆柱体的底面积与高成反比例可知,钢材的长是水面下降高度的16倍。(法1):6()=96(厘米)(法2):3.14206(3.145)=96(厘米)【拓展】 (五年级春季学习过的题目,希望教师尽量抽出时间将此题回忆一遍)一个盛有水的圆柱形容器底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为18厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米.分析:本题可能出现三种情况:放入铁圆柱后,水深不及铁圆柱高.放入铁圆柱后,水深比铁圆柱高但未溢出.水有溢出.放入铁圆柱后,在铁圆柱周围,水的截面成圆环状,如图所示,截面积为5522=21.收入圆柱前后,水的体积不变,为5515=375.又因为37521 =17 18厘米.因此这时容器的水深是17厘米.评注 请同学们考虑水深是16厘米或19厘米的情况,并与本题的结果作比较.【例9】 一个立体图形,我们从上到下,从前往后,从左到右观察都是相同的图形,是一个边长为3厘米分成9个面积相等的小正方形形成的井字形(如右图)计算该立体的全表面积和体积分析:根据三视图,可以判定立体是一个棱长为3厘米的正方体,在每个面都在中央打一个底面积为1平方厘米的正方形,高为3厘米的正棱柱孔洞如右下图设该立体的全表面积为,体积为则:(平方厘米),(立方厘米)【前铺】 在边长为4厘米的正方体木块的每个面中心打一个边与正方体的边平行的洞洞口是边长为1厘米的正方形,洞深1厘米(如下图)求挖洞后木块的表面积和体积分析:大正方体的边长为4厘米,挖去的小正方体边长为1厘米,说明大正方体木块没被挖通,因此,每挖去一个小正方体木块,大正方体的表面积增加“小洞内”的4个侧面积。6个小洞内新增加面积的总和: 114624(平方厘米),原正方体表面积:42696(平方厘米),挖洞后表面积:9624120(平方厘米),体积:4313658(立方厘米)【拓展】 (人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下侧面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积分析:外侧表面积为:61010-444-222=536-8内侧表面积为:1643+2(44-22)+2223=192+32-8+24=224+16总表面积=224+16+536-8=760+8=785.12(平方厘米)计算体积时将挖空部分的立体图形取出,如图,只要求出这个几何体的体积即可挖出的几何体体积为:4443+444+2223=192+64+24=256+24所求几何体体积为:1O1O1O- (256+24)=668.64(立方厘米)点评 能把这道题拿下,所有不规则形体的表面积和体积计算都将不在话下。一定要注意:思路要清晰,比如表面积从外面和内部去讨论,体积直接是整体减挖去部分。细节决定成败:第一点,求表面积时,内部中心的正方形减去内切圆剩下部分容易忽略;第二点,本题大正方体的棱长是10厘米,是一个很伤脑筋的数字,直接导致出现了多处的3。呵呵,很多人在此被弄得灰头土脸。【例10】 (03年数学电视科普赛)如图1,ABCD是直角梯形(单位:厘米,),(1)以AB为轴并将梯形绕这个轴旋转一周,得到一个旋转体,它的体积是多少?(2)如果以CD为轴,并将梯形绕这个轴旋转一周,得到的旋转体体积是多少?分析:(1)如图2所示,所求体积可看作BCDE绕AB的旋转体与AED绕AB的旋转体之和,即(立方厘米)(2)如图3所示,所求体积可看作ABCE绕EC的旋转体与ADE绕EC的旋转体之差,即(立方厘米) 【例11】 (第七届祖冲之杯数学邀请赛)现有一张长40厘米、宽20厘米的长方形铁皮,请你用它做一只深是5厘米的长方体无盖铁皮盒(焊接处及铁皮厚度不计,容积越大越好),你做出的铁皮盒容积是多少立方厘米?分析:法1:(1)如右图,在4020的长方形铁皮的四角截去边长5厘米的正方形铁皮,然后焊接成长方形无盖铁皮盒这个铁皮盒的:长=40-5-5=30(厘米),宽=20-5-5=10(厘米),高=5(厘米),体积=3010 5=1500(立方厘米)(2)如右图,在4020长方形铁皮的左侧两角上割下边长5厘米的正方形(二块),紧密焊接到右侧的中间部分,这样做成的无盖铁皮盒的长=405=35(厘米),宽=2055=10(厘米),高=5(厘米),体积=3510 5=1750(立方厘米) (3)如右图,在4020的长方形铁皮的左右两侧各割下一条宽为5厘米的长方形铁皮(共二块),分别焊到上、下的中间部分,这样做成的无盖铁皮盒的长=40-5-5-5-5=20(厘米),宽=20(厘米),高=5(厘米),体积=20205=2000(立方厘米)因此,最后一种容积最大法2 :你要想使容积最大,就要充分利用手中的铁皮,如果能将铁皮都用上那么就能得到一个最大的铁盒。如下图(1),我们从原铁皮上切割下4块520的长方体,如图(2),将其焊接上能做成一只深是5厘米的长方体无盖铁皮盒,那么此时的容积最大:20205=2000(立方厘米) 专题展望 练 习 三1、 用棱长是1厘米
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省临沂市河东区2024-2025学年高二上学期11月期中考试地理试题(解析版)
- 山大中药炮制题库及答案
- 广东省广州市花都区2025-2026学年九年级上学期期中考试语文试卷(无答案)
- 湖南省益阳市安化县思源实验学校2025-2026学年八年级上学期开学考试语文试题(无答案)
- 大学安全知识课件
- 深圳化学中考真题及答案
- 小数加法和减法真题及答案
- 几何体题高考真题及答案
- 上海体育面试真题及答案
- 浙江省杭州风帆中学2024-2025学年七年级上学期期中学情调查英语试题(含答案)
- 2025广东广州市海珠区凤阳街道第四批招聘雇员5人考试笔试模拟试题及答案解析
- 营盘山隧道施工方案设计
- 2025至2030中国电站建设行业市场深度调研及投资策略及有效策略与实施路径评估报告
- 2026年广西现代职业技术学院单招职业技能考试必刷测试卷及答案1套
- 砌筑抹灰升降平台专项施工方案
- 中学生宿舍楼施工组织设计
- 医院地震知识培训内容课件
- 酒狂古琴曲教学课件
- 机电行业职业知识培训课件
- 大学生创新创业(邓文达)全套教案课件
- 研学基地安全管理与应急预案
评论
0/150
提交评论