离散(英)chap4作业答案.doc_第1页
离散(英)chap4作业答案.doc_第2页
离散(英)chap4作业答案.doc_第3页
离散(英)chap4作业答案.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chap4 作业答案P44, 1.613.Yes, the nn zero matrix, which is a diagonal matrix.14.Yes,单位矩阵。15. is the diagonal matrix with i,ith entry 16. is the diagonal matrix with i,ith entry P333, 9.11.yes 2.no 3.no 4.yes 5.no 6.no 7.no 8.mutative, associative16.not commutative, not associative23.28. Since a binary operation on is a function : , there are binary operations can be defined on .29.Only elements can be chosen, and everyone has choices, then there are commutative binary operations can be defined on .P340, 9.22. First, verify whether the operations commutative, Hence, both the operations are associative.The identity of is , hence it is a monoid;The identity of is , hence it is also a monoid.6. Its a commutative semigroup.9. is closed on ; is associative; the identity is , and is commutative, hence it is a commutative monoid.13. is closed on ;,so , hence is associative; Obviously, is commtative;, is the identity;after all, it is a commutative monoid.18. , , then is not associative, it is not a semigroup.20. 26.Proof: Let be the subsemigroup of 30. Let , , is not empty and has the identity;For is associative on , and , therefore, it is associative on , too;For any , , , and is commutative on , thereforehence , is closed on .P357, 9.48. Abelian group: closed: , for ;associative and commutative;the identity is ;the inverse of is .10. Abelian group 封闭,结合,交换,单位元:零阵,逆元:-A18. For any , , ,Since is a group, there exist , and is associative, then,or,or,it follows that is Abelian.或证: 21.Consider the sequence Since G is finite, not all terms of this sequence can be distinct,That is, for some . Then ,and .25. 证 设,即对,有 ,于是 ,从而 ,于是 ,即构成的子群.26. 证 ,非空,结合律显然;若,则,即,封闭;若,即, ,即,综上所述,是的子群.33.:Suppose defined by is a homomorphism. Then Hence : Suppose is Abelian, Then So homomorphism.34. 充分性:设是一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论