三角形各种心的性质研究.doc_第1页
三角形各种心的性质研究.doc_第2页
三角形各种心的性质研究.doc_第3页
三角形各种心的性质研究.doc_第4页
三角形各种心的性质研究.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三角形各种心的性质研究一、基础知识三角形的心是指重心、外心、垂心、内心、旁心和界心三角形的心是三角形的重要几何点在数学竞赛中,有关三角形的心的几何问题是竞赛的热点问题,因此,我们对三角形的心的几何性质做概括归纳,对有关的证明方法和解题技巧做深入探讨1重心:设是的重心,的延长线交于,则, ( 2) ;(3),(4)2.外心:设()是的外接圆,于交于,则(1);(2)或;(3)=;(4)(正弦定理)3.内心:设的内心圆(切边于,的延长线交外接圆于,则 (1);(2)(3);(4);4.垂心:设分别是的外心,重心,垂心,于,的延长线交外接圆于,则(1);(2)与关于成轴对称;(3);(4)三点共线,且;5旁心:设在内的旁切圆(与的延长线切于,则(1);(2);(3);(4);(5)6三角形中内切圆、旁切圆和外圆半径的几个关系在中,内切圆分别与三边相切于点,边上的帝切圆与边切于点,且分别与边和这的延长线相切于点、点设三边、分别为,分别为,内切圆半径为,旁切圆半径分别为,外接圆半径为,三角形面积为,则有如下关系式:(1),;(2);(3)直角三角形斜边上的旁切圆的半径等于三角形周长的一半;(4);(5);(6)7界心如果三角形一边上的一点和这边对的顶点把三角形的周界分割为两条等长的折线,那么就称这一点为三角形的周界中点其中三角形的周界是指由三角形的三边所组成的围由于三角形的任意两边之和大于第三边,可知三角形任一边上的周界中点必介于这边两端点之间三角形的顶点与其对边的周界中点的连线,叫三角形的周界中线(有时也称周界中线所在直线为三角形的周界中线)三角形的周界中线交于一点定义:称三角形的周界中线的交点为三角形的界心二、例题分析例1设的外接圆的半径为,内心为,的外角平分线交圆于,证明:(1);(2)【证明】(1)延长交外接圆于,连结,易知,故为正三角形,易证,同理,即在以为圆心,为半径的圆上, 设的延长线交于,则、分别为的内、外角平分线,即为的直径,又在中,但与为等圆,故(2)连接,同上易证,又,为等边三角形,记为由知,从而有,即,又故例2锐角的外心为,线段的中点分别为、,求【解】设,则,又从而即为等腰三角形,又,例3如图分别为的外心和内心,是边上的高。在线段求证:的外接圆半径等于边上的旁切圆半径。证明(1)记,设的延长线交的外接圆于,则是圆的半径,记为,因为,所以,从而 (1)=,=,=,所以 (2)由(1)、(2)得,所以设的边上的旁切圆半径为,则。所以 即的外接半径等于边上的旁切圆半径。证明(2)记,的边上的旁切圆半径为,的边上的高为,设交于,交外接圆于,连,又由,知,有,即,但,有,代入上式,得,即的外接半径等于边上的旁切圆半径。证明(3),的边上的旁切圆半径为,的外接半径,作于,于。= ,。又,。证明(4)记,设的延长线交的外接圆于,连交于,则,作于,则,由三点共线,故又,。证明(5)连并延长交的外接圆于,设旁切圆圆心,则在的延长线上,连,过作于。连,则,分别为外接圆半径及旁切圆半径。又四点共圆。,设为的外接圆的圆心,即。又,又,=,而共线,故=,=,故=,即例4设是的边上作一内点,分别是、的内切圆半径;分别是这些三角形在、内的旁切圆半径试证:【证明】设又设的内切圆的圆心为,且与切于(如图),于是从而有:由于三角形的角的内、外平分线互相垂直,因而类似地有:进而有:类似的结论对于和也成立,故有和以上式子相乘即可得结论:例5设为的内心,其内切圆切三边、和于点、,过点平行于的直线分别交直线和于点和求证:为锐角【证明】为了证为锐角由余弦定理,只要证为此我们来计算由,考虑及,于是同理:,而同理:, 由正弦定理,有,因此又,所以又,所以考虑直角,有注意到,因此所以下面讨论界心的两个性质例6设分别为的边上的周界中点,、分别为的外接圆和内切圆半径,则(1);(2)【证明】设,则由题设条件易知由三角形面积比的性质,有同理有:;从而:把三角形恒等式和代入并整理,得由欧拉不等式,得三、训练题1已知是的垂心,且,试求的度数2分别为的边上的点,且,又设、均为锐角三角形,它们的垂心依次为,求证:(1);(2)3已知内切于的外接圆,并且与分别相切于证明的内心平分4已知中,高在其内部,过、的内心引直线分别交于(1)若,则;(2)若,则也成立吗

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论