已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江大学校级课题答辩基于人工神经网络的压力传感器的温度补偿 学生姓名 平昊张天博黄卓然指导教师 王璐 1 1压力传感器1 2压力传感器的温度补偿办法1 3国内现状1 4本课题目的 第一章绪论 1 1压力传感器 压力传感器是工业实践中最为常用的一种传感器 一般普通压力传感器的输出为模拟信号 我们通常使用的压力传感器主要是利用压电效应制造 压力传感器的温度范围分为补偿温度范围和工作温度范围 补偿温度范围是由于施加了温度补偿 精度进入额定范围内的温度范围 工作温度范围是保证压力传感器能正常工作的温度范围 压力传感器的温度范围 1 2压力传感器的温度补偿办法 硬件补偿 软件补偿 硬件补偿 软件补偿 软件补偿可以分为数值分析法和人工智能法专家系统 神经网络 遗传算法和模糊系统 硬件补偿主要采用硬件电路来消除其影响 但难以做到全额补偿 且存在补偿电路硬件漂移等问题 基于数值分析的温度补偿法 最常采用的是最小二乘曲线拟合法或多段折线逼近法 最小二乘法是基于梯度变化量的计算来求最优解的 是一种局部搜索技术 容易进入局部最优 但很难得到全局最优解 多段折线逼近法的算法较复杂 拟合精确度不高 考虑到传统的基于数值分析方法的不足 本文采用了人工神经网络理论对压力传感器进行温度补偿 人工神经网络有很强的非线性建模能力 能完成复杂的非线性映射功能 同时 神经网络具有自组织 自学习及推理的自适应能力 1 3国内现状 随着人工智能特别是神经网络技术的发展 为传感器信号的处理提供了新的有效手段 BP神经网络具有很强的函数逼近能力 被人们用来进行传感器的各种非线性误差的补偿 然而 BP神经网络存在收敛速度慢 易于陷入局部极小等点 由于人工神经网络具有独特的非线性映射能力 很强的环境适应能力 目前 人工神经网络已在语音识别 模式分类 图像处理和自动控制等领域获得了比较成功的应用 并已成为解决一批工程实际问题的有效工具之一 人工神经网络在一些领域的成功应用 促使人们开展人工神经网络在传感器非线性领域中的应用研究 利用人工神经网络所具有独特的非线性映射能力 实现传感器非线性静态校正 1 4本课程目的 新的人工神经网络计算方法对压力传感器进行了温度补偿 由于神经网络具有非线性特性 自适应和学习能力 只要能获取传感器的输入和输出数据 通过人工神经网络融合 可以逼近其输入输出特性 融合结果表明 其拟合精度较高 实现了压力传感器的温度补偿 第二章基于BP神经网络的压力传感器温度补偿 目录 2 1神经网络的发展历史及其现状 2 3BP神经网络 2 2神经网络结构 2 5BP神经网络在实例中的应用 2 4BP网络的优点及其局限性 2 6BP神经网络在压力传感器温度补偿方面的应用 2 1神经网络的发展历史及其现状 人工神经网络是由大量的 简单的处理单元 称为神经元 广泛地互相连接而形成的复杂网络系统 它反映了人脑功能的许多基本特征 是一个高度复杂的非线性动力学系统 神经网络具有非线性自适应的信息处理能力 克服了传统人工智能方法对于直觉的缺陷 因而在神经专家系统 模式识别 智能控制 组合优化 预测等领域得到成功应用 MATLAB是一种科学与工程计算的高级语言 广泛地运用于包括信号与图像处理 控制系统设计 系统仿真等诸多领域 为了解决神经网络问题中的研究工作量和编程计算工作量问题 目前工程领域中较为流行的软件MATLAB 提供了现成的神经网络工具箱 解决实际问题中 应用MATLAB语言构造典型神经网络的激活传递函数 编写各种网络设计与训练的子程序 网络的设计者可以根据需要调用工具箱中有关神经网络的设计训练程序 使自己能够从烦琐的编程中解脱出来 减轻工程人员的负担 从而提高工作效率 2 2神经网络结构 人工神经网络是模仿生物神经网络功能的一种经验模型 生物神经元受到传入的刺激 其反应又从输出端传到相联的其它神经元 输入和输出之间的变换关系一般是非线性的 神经网络是由若干简单 通常是自适应的 元件及其层次组织 以大规模并行连接方式构造而成的网络 按照生物神经网络类似的方式处理输入的信息 模仿生物神经网络而建立的人工神经网络 对输入信号有功能强大的反应和处理能力 人工神经元 感知器 示意图 若干神经元连接成网络 其中的一个神经元可以接受多个输入信号 按照一定的规则转换为输出信号 由于神经网络中神经元间复杂的连接关系和各神经元传递信号的非线性方式 输入和输出信号间可以构建出各种各样的关系 因此可以用来作为黑箱模型 表达那些用机理模型还无法精确描述 但输入和输出之间确实有客观的 确定性的或模糊性的规律 2 3BP神经网络 BP BackPropagation 神经网络是一种神经网络学习算法 其由输入层 中间层 输出层组成的阶层型神经网络 中间层可扩展为多层 相邻层之间各神经元进行全连接 而每层各神经元之间无连接 网络按有教师示教的方式进行学习 当一对学习模式提供给网络后 各神经元获得网络的输入响应产生连接权值 Weight 然后按减小希望输出与实际输出误差的方向 从输出层经各中间层逐层修正各连接权 回到输入层 此过程反复交替进行 直至网络的全局误差趋向给定的极小值 即完成学习的过程 BP神经网络是误差反向传播神经网络的简称 它由一个输入层 一个或多个隐含层和一个输出层构成 每一次由一定数量的的神经元构成 这些神经元如同人的神经细胞一样是互相关联的 2 4BP网络的优点及其局限性 BP神经网络最主要的优点是具有极强的非线性映射能力 理论上 对于一个三层和三层以上的BP网络 只要隐层神经元数目足够多 该网络就能以任意精度逼近一个非线性函数 其次 BP神经网络具有对外界刺激和输入信息进行联想记忆的能力 这是因为它采用了分布并行的信息处理方式 对信息的提取必须采用联想的方式 才能将相关神经元全部调动起来 缺点 学习效率低 速度慢 2 5BP神经网络在实例中的应用 神经网络工具箱是在MATLAB环境下开发出来的许多工具箱之一 它以人工神经网络理论为基础 利用MATLAB编程语言构造出许多典型神经网络的框架和相关的函数 最新版本的神经网络工具箱几乎涵盖了所有的神经网络的基本常用模型 如感知器和BP网络等 对于各种不同的网络模型 神经网络工具箱集成了多种学习算法 为用户提供了极大的方便 MatlabR2007神经网络工具箱中包含了许多用于BP网络分析与设计的函数 BP网络的常用函数如表所示 BP网络的常用函数表 2 6BP神经网络在压力传感器温度补偿方面的应用 welcometousethesePowerPointtemplates NewContentdesign 10yearsexperience 使用误差反向运算在工具箱中的训练函数来训练反馈神经网络去解决温度补偿的问题 训练的过程大概分为四步 训练数据的集合 创建神经网络模型 训练神经网络 对神经网络的新输入的响应仿真 神经网络的压力传感器的实际输出电压值 数据的归一化 由于BP神经网络隐含层采用的传递函数为对散S型函数和双曲线正切S型函数 它们的输出范围分别在 0 1 和 1 1 之间 由此可知归一化处理后的数值范围 即在 1和l之同 为此 依据下面两个公式 welcometousethesePowerPointtemplates NewContentdesign 10yearsexperience 神经网络的压力传感器的标准样本数据值 p 00 1015650 2163620 3379610 4641260 5966270 732110 8701081 00 105520 217270 3377420 4630060 5931570 7271420 8641941 00 1035880 2205240 3403620 467550 597060 7313090 8655581 00 1032820 2200940 341460 4667110 5962490 7328870 8696581 输入矩阵t 0 050 16250 2750 38750 50 61250 7250 83750 95 目标矩阵 new newff minmax p 1111 tansig tansig purelin trainlm 创建前向BP神经网络 输入层1个神经元 隐层有11个神经元 输出层有1个神经元组成 输入层到隐层的传函为tansig 隐层到输出层的传函为logsig 输出层的传函为 purelin 训练函数采用trainlmnet init new 网络初始化net iw 1 显示初始后的权值net b 1 显示初始后的阀值net trainParam lr 0 3 确定网络的学习速率0 3 net trainParam epochs 1000 训练的最大步数net trainParam goal 0 000001 确定训练的预期误差为0 001net train net p t 网络进行训练net iw 1 显示初始后的权值net b 1 显示初始后的阀值y sim net p 对网络进行仿真 y为仿真输出结果 对网络进行仿真
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 30593-2025外墙内保温复合板系统
- 劳动法基本知识竞赛试题题库三篇
- 市场监督总局 合同范本
- 2025年期货从业投资分析考试真题及答案解析
- 生产车间安全培训课件下载
- 小学语文《桥》教学设计
- 防灾避险安全应急知识培训课件
- 建筑施工现场工安全知识教育考试题(附含答案解析)
- 心得体会反洗钱心得体会范文3篇
- 房地产估价师《理论与方法》试题及答案(卷五)
- 中国早期结直肠癌筛查流程专家共识
- 《混凝土裂缝控制》课件
- 基于平衡计分卡的MC公司直营连锁店绩效管理方案优化研究
- 电池管理系统(BMS)设计与实现毕业答辩
- 学习《反垄断法》的心得体会
- 陪护服务协议书
- 2023《痛风诊疗规范》解读课件
- 2025年国家普通话水平考核测试标准试卷(共20套)
- 小学班主任经验交流课件
- 固定货车合同范例
- 供用电技术生涯发展展示
评论
0/150
提交评论