已阅读5页,还剩73页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二十一章 二次根式211 二次根式第一课时 教学内容 二次根式的概念及其运用 教学目标 理解二次根式的概念,并利用(a0)的意义解答具体题目 提出问题,根据问题给出概念,应用概念解决实际问题 教学重难点关键 1重点:形如(a0)的式子叫做二次根式的概念; 2难点与关键:利用“(a0)”解决具体问题 教学过程 一、复习引入 (学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是_问题2:如图,在直角三角形ABC中,AC=3,BC=1,C=90,那么AB边的长是_ 问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_ 老师点评: 二、探索新知 很明显、,都是一些正数的算术平方根像这样一些正数的算术平方根的式子,我们就把它称二次根式因此,一般地,我们把形如(a0)的式子叫做二次根式,“”称为二次根号 (学生活动)议一议: 1-1有算术平方根吗? 20的算术平方根是多少? 3当a0)、-、(x0,y0) 例2当x是多少时,在实数范围内有意义? 三、巩固练习 教材P练习1、2、3 四、应用拓展 例3当x是多少时,+在实数范围内有意义? 例4(1)已知y=+5,求的值(答案:2)(2)若+=0,求a2004+b2004的值(答案:) 五、归纳小结(学生活动,老师点评) 本节课要掌握: 1形如(a0)的式子叫做二次根式,“”称为二次根号 2要使二次根式在实数范围内有意义,必须满足被开方数是非负数 六、布置作业 1教材P8复习巩固1、综合应用52选用课时作业设计3.课后作业:同步训练教学后记:21.1 二次根式(2)第二课时 教学内容 1(a0)是一个非负数; 2()2=a(a0) 教学目标 理解(a0)是一个非负数和()2=a(a0),并利用它们进行计算和化简 通过复习二次根式的概念,用逻辑推理的方法推出(a0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a0);最后运用结论严谨解题 教学重难点关键 1重点:(a0)是一个非负数;()2=a(a0)及其运用 2难点、关键:用分类思想的方法导出(a0)是一个非负数;用探究的方法导出()2=a(a0) 教学过程 一、复习引入 (学生活动)口答 1什么叫二次根式? 2当a0时,叫什么?当a0时,有意义吗? 老师点评(略) 二、探究新知 议一议:(学生分组讨论,提问解答) (a0)是一个什么数呢? 老师点评:根据学生讨论和上面的练习,我们可以得出 (a0)是一个非负数 做一做:根据算术平方根的意义填空:()2=_;()2=_;()2=_;()2=_;()2=_;()2=_;()2=_ 老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4 同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以()2=a(a0) 例1 计算 1()2 2(3)2 3()2 4()2 三、巩固练习 计算下列各式的值:()2 ()2 ()2 ()2 (4)2 四、应用拓展 例2 计算1()2(x0) 2()2 3()2 4()2例3在实数范围内分解下列因式: (1)x2-3 (2)x4-4 (3) 2x2-3 五、归纳小结 本节课应掌握: 1(a0)是一个非负数; 2()2=a(a0);反之:a=()2(a0) 六、布置作业 1教材P8 复习巩固2(1)、(2) P9 72选用课时作业设计3.课后作业:同步训练 教学后记:1.1 二次根式(3)第三课时 教学内容 a(a0) 教学目标 理解=a(a0)并利用它进行计算和化简 通过具体数据的解答,探究=a(a0),并利用这个结论解决具体问题 教学重难点关键 1重点:a(a0) 2难点:探究结论 3关键:讲清a0时,a才成立 教学过程 一、复习引入 老师口述并板收上两节课的重要内容; 1形如(a0)的式子叫做二次根式; 2(a0)是一个非负数; 3()2a(a0) 那么,我们猜想当a0时,=a是否也成立呢?下面我们就来探究这个问题 二、探究新知 (学生活动)填空: =_;=_;=_; =_;=_;=_ (老师点评):根据算术平方根的意义,我们可以得到: =2;=0.01;=;=;=0;= 因此,一般地:=a(a0) 例1 化简 (1) (2) (3) (4) 三、巩固练习 教材P7练习2 四、应用拓展 例2 填空:当a0时,=_;当aa,则a可以是什么数? 五、归纳小结 本节课应掌握:=a(a0)及其运用,同时理解当a0时,a的应用拓展 六、布置作业 1教材P8习题211 3、4、6、82选作课时作业设计3.课后作业:同步训练 教学后记: 212 二次根式的乘除第四课时 教学内容 (a0,b0),反之=(a0,b0)及其运用 教学目标 理解(a0,b0),=(a0,b0),并利用它们进行计算和化简 由具体数据,发现规律,导出(a0,b0)并运用它进行计算;利用逆向思维,得出=(a0,b0)并运用它进行解题和化简 教学重难点关键 重点:(a0,b0),=(a0,b0)及它们的运用 难点:发现规律,导出(a0,b0) 关键:要讲清(a0,b、0),反过来=(a0,b0)及利用它们进行计算和化简 教学目标 理解=(a0,b0)和=(a0,b0)及利用它们进行运算 利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简 教学重难点关键 1重点:理解=(a0,b0),=(a0,b0)及利用它们进行计算和化简 2难点关键:发现规律,归纳出二次根式的除法规定 教学过程 一、复习引入 (学生活动)请同学们完成下列各题: 1写出二次根式的乘法规定及逆向等式 2填空 (1)=_,=_; (2)=_,=_; (3)=_,=_; (4)=_,=_规律:_;_;_;_ 3利用计算器计算填空: (1)=_,(2)=_,(3)=_,(4)=_ 规律:_;_;_;_。 每组推荐一名学生上台阐述运算结果 (老师点评) 二、探索新知 刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到: 一般地,对二次根式的除法规定:=(a0,b0),反过来,=(a0,b0) 下面我们利用这个规定来计算和化简一些题目 例1计算:(1) (2) (3) (4) 分析:上面4小题利用=(a0,b0)便可直接得出答案 例2化简: (1) (2) (3) (4) 分析:直接利用=(a0,b0)就可以达到化简之目的 三、巩固练习 教材P14 练习1 四、应用拓展 例3已知,且x为偶数,求(1+x)的值 五、归纳小结 本节课要掌握=(a0,b0)和=(a0,b0)及其运用 六、布置作业 1教材P15 习题212 2、7、8、92选用课时作业设计3.课后作业:同步训练 教学后记: 21.2 二次根式的乘除(3)第六课时 教学内容 最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算 教学目标 理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式 通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求 重难点关键 1重点:最简二次根式的运用 2难点关键:会判断这个二次根式是否是最简二次根式 教学过程 一、复习引入 (学生活动)请同学们完成下列各题(请三位同学上台板书) 1计算(1),(2),(3) 老师点评:=,=,= 2现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,那么它们的传播半径的比是_ 它们的比是 二、探索新知 观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点: 1被开方数不含分母; 2被开方数中不含能开得尽方的因数或因式 我们把满足上述两个条件的二次根式,叫做最简二次根式 那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式 学生分组讨论,推荐34个人到黑板上板书老师点评:不是=. 例1(1) ; (2) ; (3) 例2如图,在RtABC中,C=90,AC=2.5cm,BC=6cm,求AB的长 三、巩固练习 教材P14 练习2、3 四、应用拓展例3观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:=-1,=-, 同理可得:=-, 从计算结果中找出规律,并利用这一规律计算 (+)(+1)的值 五、归纳小结 本节课应掌握:最简二次根式的概念及其运用 六、布置作业 1教材P15 习题212 3、7、102选用课时作业设计3.课后作业:同步训练 教学后记:21.3 二次根式的加减(1)第七课时 教学内容 二次根式的加减 教学目标 理解和掌握二次根式加减的方法 先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解再总结经验,用它来指导根式的计算和化简 重难点关键 1重点:二次根式化简为最简根式 2难点关键:会判定是否是最简二次根式 教学过程 一、复习引入 学生活动:计算下列各式 (1)2x+3x; (2)2x2-3x2+5x2; (3)x+2x+3y; (4)3a2-2a2+a3 教师点评:上面题目的结果,实际上是我们以前所学的同类项合并同类项合并就是字母不变,系数相加减 二、探索新知 学生活动:计算下列各式(1)2+3 (2)2-3+5 (3)+2+3 (4)3-2+ 老师点评: 所以,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并 例1计算 (1)+ (2)+ 例2计算 (1)3-9+3 (2)(+)+(-) 三、巩固练习 教材P19 练习1、2 四、应用拓展 例3已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值 五、归纳小结 本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并 六、布置作业 1教材P21 习题213 1、2、3、52选作课时作业设计3.课后作业:同步训练 教学后记:21.3 二次根式的加减(2)第八课时 教学内容 利用二次根式化简的数学思想解应用题 教学目标 运用二次根式、化简解应用题 通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题 重难点关键 讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点 教学过程 一、复习引入 上节课,我们已经讲了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们讲三道例题以做巩固二、探索新知例1如图所示的RtABC中,B=90,点P从点B开始沿BA边以1厘米/秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动问:几秒后PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示) 分析:设x秒后PBQ的面积为35平方厘米,那么PB=x,BQ=2x,根据三角形面积公式就可以求出x的值 例2要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?分析:此框架是由AB、BC、BD、AC组成,所以要求钢架的钢材,只需知道这四段的长度 三、巩固练习 教材P19 练习3 四、应用拓展 例3若最简根式与根式是同类二次根式,求a、b的值(同类二次根式就是被开方数相同的最简二次根式) 分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;事实上,根式不是最简二次根式,因此把化简成|b|,才由同类二次根式的定义得3a-b=2,2a-b+6=4a+3b 解:首先把根式化为最简二次根式: =|b| 由题意得 a=1,b=1 五、归纳小结 本节课应掌握运用最简二次根式的合并原理解决实际问题 六、布置作业 1教材P21 习题213 72选用课时作业设计3.课后作业:同步训练 教学后记:21.3 二次根式的加减(3)第九课时 教学内容 含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用 教学目标 含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用 复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算 重难点关键 重点:二次根式的乘除、乘方等运算规律; 难点关键:由整式运算知识迁移到含二次根式的运算 教学过程 一、复习引入 学生活动:请同学们完成下列各题: 1计算 (1)(2x+y)zx (2)(2x2y+3xy2)xy 2计算 (1)(2x+3y)(2x-3y) (2)(2x+1)2+(2x-1)2 老师点评:这些内容是对八年级上册整式运算的再现它主要有(1)单项式单项式;(2)单项式多项式;(3)多项式单项式;(4)完全平方公式;(5)平方差公式的运用 二、探索新知 如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?仍成立 整式运算中的x、y、z是一种字母,它的意义十分广泛,可以代表所有一切,当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式 例1计算: (1)(+) (2)(4-3)2 例2计算 (1)(+6)(3-) (2)(+)(-) 三、巩固练习 课本P20练习1、2 四、应用拓展 五、归纳小结 本节课应掌握二次根式的乘、除、乘方等运算 六、布置作业 1教材P21 习题213 1、8、9 2选用课时作业设计3.课后作业:同步训练 教学后记:二次根式复习课(第十课)教学目标1使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2熟练地进行二次根式的加、减、乘、除混合运算教学重点和难点重点:含二次根式的式子的混合运算难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子教学过程设计一、复习1请同学回忆二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件 指出:二次根式的这些基本性质都是在一定条件下才成立的,主要应用于化简二次根式2二次根式的乘法及除法的法则是什么?用式子表示出来指出:二次根式的乘、除法则也是在一定条件下成立的把两个二次根式相除,计算结果要把分母有理化3在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:4在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:二、例题例1 x取什么值时,下列各式在实数范围内有意义:例3三、课堂练习1选择题:Aa2Ba2Ca2Da2Ax+2 B-x-2C-x+2Dx-2A2x B2aC-2xD-2a2填空题:4计算:四、小结1本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握2在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围3运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件4通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题五、作业1x是什么值时,下列各式在实数范围内有意义?2把下列各式化成最简二次根式:课后反思:第二十二章 一元二次方程学 习目 标1、使学生了解一元二次方程的意义。2、通过提供实际问题的情境,让学生感受到在我们的生活、学习中方程知识的实际意义。3、能够根据具体问题中的数学关系,列出程体会一元二次方程是刻画现实世界的一个有效的数学模型。学习重点建立一元二次方程的概念,认识一元二次方程的一般形式。学习难点在一元二次方程化成一般形式后,如何确定一次项和常数项。教 学 互 动 设 计设计意图一、自主学习 感受新知【问题1】有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?【问题2】学校图书馆去年年底有图书5万册,预计至明年年底增加到7.2万册,求这两年的年平均增长率。【问题2】学校要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?鼓励学生独立解决问题,让学生初步感受一元二次方程,同时让学生体会方程这一刻画现实世界的数学模型二、自主交流 探究新知【探究】(1)上面三个方程左右两边是含未知数的 整式 (填 “整式”“分式”“无理式”);(2)方程整理后含有 一 个未知数;(3)按照整式中的多项式的规定,它们最高次数是 二 次。【归纳】1、一元二次方程的定义等号两边都是 整式 ,只含有 一 个求知数(一元),并且求知数的最高次数是 2 (二次)的方程,叫做一元二次方程。2、一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a0)这种形式叫做一元二次方程的一般形式。其中ax2是二次项,a是二次项系数,bx是一次项,b是一次项系数,c是常数项。【注意】方程ax2+bx+c=0只有当a0时才叫一元二次方程,如果a=0,b0时就是一元一次方程了。所以在一般形式中,必须包含a0这个条件。【补充练习】判断下列方程,哪些是一元二次方程?(1)x32; ()x2;()5x2-2x-=x2-2x+; ()(x)2(x);()x2xx2; ()ax2bxc主体活动,探索一元二次方程的定义及其相关概念判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断。三、自主应用 巩固新知【例1】将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项【注意】二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号. 【例2】将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项【例3】求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程【练习】27 1 2 进一步巩固一元二次方程的基本概念四、自主总结 拓展新知1、a0是ax2+bx+c=0成为一元二次方程的必要条件,否则,方程ax2+bx+c=0变为bx+c=0,就不是一元二次方程。2、找一元二次方程中的二次项系数、一次项系数、常数项,应先将方程化为一般形式。五、课堂作业 P28 1 2 5 6 7 (课堂内外对应练习)课后反思:第2课时 一元二次方程(2)学 习目 标1、会进行简单的一元二次方程的试解;理解方程解的概念。2、会估算实际问题中方程的解,并理解方程解的实际意义。学习重点一元二次方程解的探索。学习难点一元二次方程近似解的探索。教 学 互 动 设 计设计意图一、自主学习 感受新知【问题1】把方程3x(x1)=2(x+2)+8化成一般形式,并写出它的二次项系数、一次项系数及常数项。【问题2】判断下列方程哪些是一元二次方程?为什么?x2+4x+=0 x2+3x2= x2x22xy3=0 a x2+bx+c=0复习巩固一元二次方程的相关概念。二、自主交流 探究新知【探究】猜测方程的解是什么?【归纳】使一元二次方程等号两边相等的未知数的值叫作一元二次方程的解,又叫作一元二次方程的根【问题3】下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4【分析】要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根【问题4】认真观察下列方程的结构形式,试写出下列方程的根,并说出你的理由。x2-16=0 (x+3)(x-2)=0 (x-2)2=49 x2-2x+1=25探究一元二次方程根的概念以及作用进一步巩固方程的根的含义方程的根可以起到检验的作用检验一个数是否是方程的根三、自主应用 巩固新知【例1】若x2是方程的一个根,你能求出a的值吗?【例2】若x=1是关于x的一元二次方程ax2+bx+c=0(a0)的一个根,求代数式2007(a+b+c)的值。【练习】28 1 2 方程的根的另一个作用代入方程使等号成立四、自主总结 拓展新知1、一元二次方程根的概念;2、要会判断一个数是否是一元二次方程的根;3、要会用一些方法求一元二次方程的根五、课堂作业 P28 3 4 8 (课堂内外对应练习)【补充练习】1、方程x(x-1)=2的两根为【 】 Ax1=0,x2=1 Bx1=0,x2= -1 Cx1=1,x2=2 Dx1=-1,x2=22、方程x2-81=0的两个根分别是x1=_,x2=_3、已知方程5x2+mx-6=0的一个根是x=3,则m的值为_4、若一元二次方程ax2+bx+c=0(a0)有一个根为1,则a+b+c= ;若有一个根是-1,则b与a、c之间的关系为 ;若有一个根为0,则c= 。5、如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值课后反思:第3课时 解一元二次方程配方法(1)学 习目 标1、使学生会用直接开平方法解一元二次方程。2、渗透转化思想,掌握一些转化的技能。学习重点掌握直接开平方法解一元二次方程。学习难点灵活运用直接开平方法解一元二次方程。教 学 互 动 设 计设计意图一、自主学习 感受新知【问题1】一桶某种油漆可刷的面积为1500dm2,小李用这桶漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?创设问题情境,激发学生兴趣,引出本节内容二、自主交流 探究新知【探究】对照问题1解方程的过程,你认为应该怎样解方程(2x-1)2=5及方程x2+6x+9=4?方程(2x-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为,即将方程变为和两个一元一次方程,从而得到方程(2x-1)2=5的两个解为x1=,x2=。在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了。方程x2+6x+9=4的左边是完全平方式,这个方程可以化成(x+ 3 )2=4,进行降次,得到 x+3=2 ,方程的根为x1= -1,x2= -5。【归纳】在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程即,如果方程能化成或的形式,那么可得或鼓励学生独立解决问题,在解决问题的过程中体会解简单的一元二次方程的思想“降次”把二次降为一次,进而解一元一次方程即可三、自主应用 巩固新知【例1】解下列方程:2y2=8 2(x-8)2=50(2 x-1)2+4=0 4x2-4x+1=0 【例2】市区内有一块边长为15米的正方形绿地,经城市规划,需扩大绿化面积,预计规划后的正方形绿地面积将达到300平方米,这块绿地的边长增加了多少米?(结果保留一位小数)【例3】市政府计划2年内将人均住房面积由现在的10m2提高到14.4m2,求每年人均住房面积增长率帮助学生掌握并巩固一元二次方程的解法,强调所求未知数的值要使实际问题有意义,让学生能进行根的取舍。四、自主总结 拓展新知1、用直接开平方解一元二次方程。2、理解“降次”思想。3、理解x2=p或(mx+n)2=p(p0)为什么p0?五、课堂作业 P42 1 (课堂内外对应练习)课后反思:第4课时 解一元二次方程配方法(2)学 习目 标1、会用配方法解数字系数的一元二次方程。2、掌握配方法和推导过程,能使用配方法解一元二次方程。3、渗透转化思想,掌握一些转化的技能学习重点掌握配方法解一元二次方程。学习难点把一元二次方程转化为形如(x-a)2=b的过程。教 学 互 动 设 计设计意图一、自主学习 感受新知【问题1】填空(1)x2-8x+_16_=(x-_4_)2;(2)9x2+12x+_4_=(3x+_2_)2;(3)x2+px+=(x+)2【问题2】若4x2-mx+9是一个完全平方式,那么m的值是 12 。【问题3】要使一块矩形场地的长比宽多6 m,并且面积为16 m2,场地的长和宽分别是多少?熟悉完全平方式。实例引入,发现问题。二、自主交流 探究新知【探究】怎样解方程x2+6x-16=0?【归纳】通过配成完全平方式的形式解一元二次方程的方法,叫作配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程三、自主应用 巩固新知【例1】用配方法解下列方程:x2-8x+1=0x2-4x+1=09x2+6x-3=0【例2】如图,在RtACB中,C=90,AC=8m,CB=6m,点P、Q同时由A,B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后PCQ的面积为RtACB面积的一半【练习】34 1 2(1 2) 在学生解决问题的过程中,适时让学生讨论解决遇到的问题,然后分析归纳利用配方法解方程时应该遵循的步骤。应用提高、拓展创新,培养学生应用意识四、自主总结 拓展新知左边不是含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程五、课堂作业 P42 2 3 (1 2) (课堂内外对应练习)课后反思:第5课时 解一元二次方程配方法(3)学 习目 标1、使学生进一步会用配方法解数字系数的一元二次方程。2、使学生掌握配方法和推导过程,能使用配方法解一元二次方程。3、渗透转化思想,掌握一些转化的技能。学习重点掌握配方法解一元二次方程。学习难点把一元二次方程转化为形如(x-a)2=b的过程。教 学 互 动 设 计设计意图一、自主学习 感受新知【问题1】填上适当的数,使下列各式成立,并总结其中的规律。x2+ 6x+ =(x+3)2 x2+8x+ =(x+ )2 x2-12x+ =(x- )2 x2-+ =(x- )2a2+2ab+ =(a+ )2 a2-2ab+ =(a- )2【问题2】解下列方程: x2-4x+7=0 2x2-8x+1=0复习相关内容,实行知识储备。复习基本方法,逐步加深难度。二、自主交流 探究新知【探究】利用配方法解下列方程,你能从中得到在配方时具有的规律吗?3x26x + 4 = 0; 2x2+1=3x (2x-1)(x+3)=5【归纳】利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式ax2+bx+c=0;(2)把方程的常数项通过移项移到方程的右边;(3)方程两边同时除以二次项系数a;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解教师书写完整的解题过程,给学生以示范作用。在直接开平方时强调符号,这是易错之处。主体探究、归纳配方法一般过程三、自主应用 巩固新知【例1】用配方法解下列方程:x(2x-5)=4x-10 x2+5x+7=3x+11【例2】绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长应是多少米?【练习】34 2 应用提高、拓展创新,培养学生应用意识四、自主总结 拓展新知(1)把方程化为一般形式ax2+bx+c=0;(2)把方程的常数项通过移项移到方程的右边;(3)方程两边同时除以二次项系数a;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解(6)如果方程右边是非负数,两边直接开平方求解,如果方程右边是负数,则原方程无解。五、课堂作业 P42 3 (课堂内外对应练习)第6课时 解一元二次方程公式法(1)学 习目 标1、经历推导求根公式的过程,加强推理技能的训练。2、会用公式法解简单系数的一元二次方程。学习重点求根公式的推导和公式法的应用。学习难点一元二次方程求根公式法的推导。教 学 互 动 设 计设计意图一、自主学习 感受新知【问题】用配方法解方程:x2+3x+2=0 2x2-3x+5=0学生板演,复习旧知二、自主交流 探究新知【探究】用配方法解方程:ax2+bx+c=0(a0)【分析】前面具体数字已做了很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去。解:移项,得:ax2+bx=-c 因为a0,所以方程两边同除以a得: x2+x=- 配方,得:x2+x+()2=-+()2 即(x+)2=a0 4a20 当 b2-4ac0时, 0 x+= 即x= x1=,x2= 由上可知,一元二次方程ax2+bx+c=0(a0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac0时,将a、b、c代入式子x=(b2-4ac0)就可求出方程的根 (2)这个式子叫做一元二次方程的求根公式 (3)利用求根公式解一元二次方程的方法叫公式法(4)由求根公式可知,一元二次方程最多有两个实数根【强调】用公式法解一元二次方程时,必须注意两点:将a、b、c的值代入公式时,一定要注意符号不能出错。式子b2-4ac0是公式的一部分。解有些二次项系数是具体数字的方程不必写。配方时方程两边同加上一次项系数一半的平方。配方到这一步,两边要进行开平方运算。被开方数必须是非负数。所以,要对进行分析。通过解方程发现归纳一元二次方程的求根公式三、自主应用 巩固新知【例】用公式法解下列方程(1)2x2-x-1=0 (2)x2+1.5=-3x (3) x2-x+ =0 (4)4x2-3x+2=0【分析】用公式法解一元二次方程,需先确定a、b、c的值、再算出b2-4ac的值、最后代入求根公式求解【说明】(1)一元二次方程ax2+bx+c=0(a0)的根是由一元二次方程的系数a、b、c确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b2-4ac0的前提下,把a、b、c的值代入x=(b2-4ac0)中,可求得方程的两个根;(3)由求根公式可以知道一元二次方程最多有两个实数根【练习】37 1 主体探究、探究利用公式法解一元二次方程的一般方法,进一步理解求根公式四、自主总结 拓展新知1、求根公式的推导过程;2、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人委托协议书范本
- 陕西商南县2026届物理八上期末检测模拟试题含解析
- 2025年电商代运营服务合同协议
- 2025年电脑售后合同协议
- 2025年电竞主播转会合同协议(转会方)
- 2025年电竞直播平台广告位租赁合同协议
- 2025年电竞学院培训合同协议
- 化工行业化工设备环境影响法规工程师面试题目及答案
- 安全坚持记录手册讲解
- 个人房买卖合同(标准版)
- 2025年电梯安全管理员试题复习带标准答案新版
- 2025年10月自考00226知识产权法真题及答案
- 粮食局考试试题及答案
- 《学前心理学》课件-任务四 掌握学前儿童的感觉和知觉的发展
- 关于推动党建引领经济高质量发展的调研报告
- 间歇性跛行的鉴别诊疗培训课件
- 盟史简介12.10.18课件
- 中医外科学课件章第十三章泌尿男性疾病
- GB/T 8491-2009高硅耐蚀铸铁件
- GB/T 5334-2021乘用车车轮弯曲和径向疲劳性能要求及试验方法
- GA/T 1356-2018国家标准GB/T 25724-2017符合性测试规范
评论
0/150
提交评论