数学人教版七年级下册7.2.2用坐标表示平移(第一课时).doc_第1页
数学人教版七年级下册7.2.2用坐标表示平移(第一课时).doc_第2页
数学人教版七年级下册7.2.2用坐标表示平移(第一课时).doc_第3页
数学人教版七年级下册7.2.2用坐标表示平移(第一课时).doc_第4页
数学人教版七年级下册7.2.2用坐标表示平移(第一课时).doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教2011课标版七年级数学7.2.2用坐标表示平移(第1课时)教学设计广河一中 马维俊2017年5月3日数学课程标准在“教学建议”指出,数学教学是数学活动的教学,是师生积极参与、交往互动、共同发展的过程。教师是进行数学活动的组织者、引导者、合作者,是教学活动的主导;学生是数学活动的参与者、实践者,是学习活动的主体。1、 教学目标1.知识与技能:知道如何用坐标来表示点的平移。2.过程与方法:经历点的平移与点的坐标变化之间关系的探究过程,掌握用坐标表示点的平移的方法。3.情感态度与价值观:体会用坐标方法研究图形平移的便捷与精准,体会数形结合、归纳、类比等数学思想的运用。二、学情分析1.学生分析七年级学生经过第一学期数学思维的训练,学生思维能力得到快速发展,随着观察能力、记忆能力和想象能力的迅速发展,学生解决问题的能力也得到提高。2.知识准备知识掌握上,学生在第五章第四节已经学习了图形的平移,对平移的概念和性质已经熟知.同时平面直角坐标系的相关内容也在第七章中刚刚进行了学习.所以学习本节内容无知识障碍.窗体底端三、教材分析窗体顶端 本节内容是以5.4平移和7.1平面直角坐标系为基础的关于图形变换的相关内容,所以具有较强的综合性.尤其渗透了数形结合等数学思想方法.四、重点难点1.重点:通过点的平移得到点的坐标变化的规律。2.难点:点的平移与点的坐标变化之间的相互关系。五、教学手段窗体顶端 采用一体机和黑板相结合的教学手段。一体机演示引入问题、课题、学习目标、探究过程、动画演示、结论、练习等;黑板板书一般化的结论、数学思想方法.窗体底端六、教学过程1.复习引入演示三角形的平移,并提出问题:什么是图形的平移?图形的平移有什么性质?学生活动:学生独立思考,回顾并口答。设计意图:本节课是在5.4平移的基础上继续学习图形的平移,故通过提问的方式复习图形的平移的概念和性质,为本节课做好知识准备。2. 课题目标 出示本节课的课题,交代本节课内容分两学时,并出示第一学时的三维学习目标及重难点。设计意图:通过对课题的引入,让学生明确坐标方法的第二种应用平面直角坐标系内的图形的平移。同时让学生明确这节课的学习目标,带着目标走进课堂.3. 新知探究 过程1:将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出这个点,并写出它的坐标.观察坐标的变化,你能从中发现什么规律吗?学生活动:在坐标纸上描出点A,并把点A向右平移5个单位长度得到点A1.回顾并口答:在平面直角坐标系中已知一个点,如何确定它的坐标.在坐标纸上确定点A1的坐标小组讨论并回答:观察由点A平移到点A1时,点的坐标(横坐标和纵坐标)有什么变化?设计意图:通过循序渐进的方式,引导学生经历“由点的平移发现点的坐标的变化”的过程,体会平面直角坐标系中点的平移引起的有序数对的变化,提升对数形结合的数学思想的理解.过程2:将点A(-2,-3)向右平移7个单位长度,得到点A2,在图上标出这个点,并写出它的坐标.观察坐标的变化,你能从中发现什么规律吗?学生活动:类比“过程1”独立在坐标纸上完成下面三个任务.在坐标纸上描出点A,并把点A向右平移7个单位长度得到点A2.在坐标纸上确定点A2的坐标观察由点A平移到点A2时,点的坐标(横坐标和纵坐标)有什么变化?设计意图:进一步向右平移一个点,得到点的坐标变化的结果,对比过程1的结果,归纳点向右平移时坐标的变化规律.同时体会类比探究的学习方法在本过程中的作用.过程3:将点A(-2,-3)向右平移a(a0)个单位长度得到点An,你能写出这个点的坐标吗?将点P(x,y)向右平移a(a0)个单位长度得到点P1,你能写出这个点的坐标吗?学生活动:小组内讨论,归纳过程1和过程2的结果,尝试给出An和P1的坐标.设计意图:过程3是将过程1和过程2进行归纳,并得到一般化的结论,即在平面直角坐标系中将点向右平移时,横坐标发生变化,纵坐标不变.通过对三个过程的归纳总结,让学生体会“从特殊到一般”的归纳的数学思想,加强学生的归纳能力.本环节初步达成情感态度价值观目标:让学生感受数形结合的数学思想、归纳的数学思想和类比的数学思想在整个探究过程中的作用。4、 继续探究将点A(4,-2)向左平移3个单位长度,得到点A1,在图上标出这个点,并写出它的坐标.观察坐标的变化,你能从中发现什么规律吗?把点A向左平移7个单位长度呢?平移a(a0)个单位长度呢?学生活动:类比“新知探究”的三个过程,分别把点A向左平移3个单位长度和7个单位长度,在坐标纸上完成三个任务:描出平移后的点,确定点的坐标,观察坐标变化.依据两次平移后的规律尝试确定向左平移a(a0)个单位长度后的坐标.最后给出P(x,y)向左平移a(a0)个单位长度后的点的坐标.设计意图:本探究过程主要是在点的向右平移的基础上进行向左平移,观察点的坐标变化规律.体会点向左平移和向右平移时,横坐标的变化情形不同,即右加左减.“新知探究”和“继续探究”两个环节初步突破本节课的难点. 5、随堂训练 点A(3,2)向左平移3个单位长度得到B,则B的坐标为( ) 点A(3,2)向右平移2.5个单位长度得到C,则C的坐标为( )学生活动:根据所学知识快速填空并向大家展示答案.设计意图:通过两个练习,让学生巩固点左右平移时坐标的变化规律。6.再次探究将点A(-2,-3)向上平移2个单位长度,得到点A1,在图上标出这个点,并写出它的坐标.观察坐标的变化,你能从中发现什么规律吗?把点A向上平移4个单位长度呢?平移b(b0)个单位长度呢?把点P(x,y)向上坡平移b(b0)个单位长度呢?将点A(3,1)向下平移1个单位长度,得到点A1,在图上标出这个点,并写出它的坐标.观察坐标的变化,你能从中发现什么规律吗?把点A向下平移3个单位长度呢?平移b(b0)个单位长度呢?把点P(x,y)向下坡平移b(b0)个单位长度呢?学生活动:类比探究点的左右平移的过程,在坐标纸上分别进行两次具体的点的向上平移的探究和向下平移的探究,每个平移过程都进行三个任务:描出平移后的点,确定点的坐标,观察坐标变化.然后采用归纳的方法得出结论,并向大家展示.依据两次平移后的规律尝试确定向上(下)平移b(b0)个单位长度后的坐标.最后给出P(x,y)向上(下)平移b(b0)个单位长度后的点的坐标.设计意图:本环节继续采用数形结合的思想和归纳类比的方法探究点上下平移时点的坐标的变化规律,最终得出“在平面直角坐标系中将点上下平移时,横坐标不变,纵坐标变化”的结论,并得到一变化的结果,即上加下减.三个探究环节达成知识与技能目标和过程与方法目标本环节突破本节课的学习难点.7.当堂训练练习1:点A(3,2)向上平移2个单位长度得到A,则A的坐标为( )点A(3,2)向下平移2.5个单位长度得到A,则A的坐标为( )练习2:点A(3,-2)向左平移4个单位长度得到A,则A的坐标为( )点A(3,-2)向下平移2个单位长度得到A,则A的坐标为( )点A(3,-2)先向左平移4个单位长度,再向下平移2个单位长度得到A,则A的坐标为( )学生活动:练习1学生快速口答练习2的前两个小题学生自主思考口答,第三小题小组讨论并回答.设计意图:巩固本节课的知识要点,即点的平移引起的点的坐标变化的规律.8.逆向探究把点A(3,-2)平移后得到点A1(-1,-2),则A是怎么平移的?学生活动:先观察点的坐标变化,再在坐标纸上描出这两个点,观察点的位置,最后归纳结论.之后猜想,当点的横坐标发生变化,点如何平移?当点的纵坐标发生变化,点如何平移?思考之后给出结论.设计意图:本环节重在将前面“由点的平移看点的坐标变化”进行逆向探究,即探究“点的坐标发生变化时点是如何平移的”.本环节加强学生逆向思维的锻炼,培养学生全面探究的习惯.9. 当堂训练 点A(-3,1)平移后得到B(-3,4),则平移的过程是怎样的? 点M(-3,1)平移后得到N(-1,4),则平移的过程是怎样的? 学生活动:独立思考或小组讨论,并分享答案. 设计意图:通过本练习,学生区分“由点的平移到点的坐标变化的规律”和“有点的坐标变化到点的平移的规律”,将所学内容进行深化. 9. 课堂小结 本节课你有什么收获?学生活动:学生自由发挥,谈自己在本节课的收获.设计意图:学生回顾本节课的探究过程,追寻自己的心理路程和思维过程,然后结合本节课的知识,去总结本节课所学内容,梳理知识框架,构建知识结构,形成数学思想方法。10.作业布置1、习题7.2第3、4题(P78);2、配套练习-练习五(P38).设计意图:课本练习,帮助学生巩固本节课所学知识.配套练习旨在让学生加强对所学内容的应用能力,提升对课堂内容的理解程度.六、板书设计7.2.2 用坐标表示平移黑板7.2.2用坐标表示平移1、点的平移点的坐标变化P(x,y)右移P1(x+a,y)P(x,y)左移P2(x-a,y)P(x,y

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论