全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 数集和确界原理一 区间与邻域1、区间的定义 设a、bR且ab.开区间(a, b)、闭区间 a, b、半开半闭区间、有限区间的定义。几何意义。区间 、无限区间的定义。有限区间和无限区间统称为区间。满足绝对值不等式的全体实数x的集合称为2、邻域的定义 设。 点的邻域 或 的定义 点a的空心邻域或的定义 的差别 点a的右邻域或点a的左邻域或点a的空心左、右邻域、等的定义邻域、+邻域、邻域。二 有界集确界原理1、有界集的定义定义1 设S为R中的一个数集。若存在数M(L),使得对一切都有则称S为有上界(下界)的数集,数M(L)称为S的一个上界(下界)。若数集S既有上界又有下界,则称S为有界集。若S不是有界集,则称S为无界集。注:介绍有界集的几种等价定义,正面叙述无界集的概念。例1 证明数集有下界而无上界。分析证 例 任何有限区间都是有界集,无限区间都是无界集;由有限个数组成的数集是有界集。2、数集的上确界和下确界的精确定义描述性定义:若数集S有上界,则显然它有无穷多个上界,而其中最小的一个上界常常具有重要的作用,称它为数集S的上确界。同样,有下界数集的最大下界,称为该数集的下确界。精确定义定义2 设S是R中的一个数集。若数满足:(i)对一切;(ii)对任何数集S的上确界,记作定义3 设S是R中的一个数集。若数满足:(i)对一切(ii)对任何为数集S的下确界,记作上确界与下确界统称为确界。注:以上确界为例,下确界类似定义设S是R中的一个数集。若数满足:(i)对一切;(ii)对任何则称数也为数集S的上确界。例2 设。试按上、下界的定义验证:sup S=1,inf S=0.例 闭区间0,1的上、下确界分别为1和0对于数集的上、下确界分别为正整数集N+有下确界而没有上确界。注1 由上(下)确界的定义可见,若数集S存在上(下)确界,则一定是唯一的。又若数集S存在上、下确界,则有inf Ssup S.注2 从上面一些例子可见,数集S的确界可能属于S,也可能不属于S。例3 设数集S有上确界。证明分析证 3、确界原理及其应用定理1.1(确界原理) 设S为非空数集。若S有上界,则S必有上确界;若S有下界,则S必有下确界。分析证 采用构造性证明方法证明关于上确界的结论注:在本书中确界原理是极限理论的基础。例4 设A、B为非空数集,满足:对一切上确界,数集B有下确,且 (2)分析证 例5 设A、B为非空有界数集,S=AB。证明:(i)(ii)分析证 确界原理的扩充若把+和补充到实数集中,并规定一实数a与+、的大小关系为:a+,a,+,则确界概念可扩充为:若S无上界,则定义+为S的非正常上确界,记作supS=+;若要无下界,则定义为S的非正常下确界,记作infS=,相应地,前面定义2和定义3中所定义的确界分别称为正常上、下确界。推广的确界原理 任一非空数集必有上、下确界(正常的或非正常的)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合伙人种树合同范本
- 发廊对外承包协议书
- 合伙独居生活协议书
- 受损配件出售协议书
- 合作生产电池协议书
- 2026年医疗卫生行政监管体系协议
- 2026年医疗行业风险识别和管理协议
- 2026年医院古乔布斯模型馆共建合同
- 未来五年移动通信手持机零件企业数字化转型与智慧升级战略分析研究报告
- 未来五年中小型型钢企业制定与实施新质生产力战略分析研究报告
- 无人机组装与调试 课件 项目一 无人机组装调试基础
- 正念减压疗法详解课件
- 吉祥物设计课件 2024-2025学年人教版(2024)初中美术七年级上册
- 国家级紧急医学救援队伍建设规范
- 氧化还原反应应用课件
- 汽车维修专业教师企业实践报告6篇
- GB 30254-2024高压三相笼型异步电动机能效限定值及能效等级
- 房地产行业广告违禁词包括
- 外科学教学课件:颈、腰椎退行性疾病
- 惠安女课件完
- 大学生职业生涯规划(第四版)课件 戴艳 第六次 职业发展的能力
评论
0/150
提交评论