数学人教版九年级上册二次函数的应用.docx_第1页
数学人教版九年级上册二次函数的应用.docx_第2页
数学人教版九年级上册二次函数的应用.docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2课时 二次函数的应用桃江县湖莲坪学校 王赛花教学目标知识与技能:1.探索实际问题中两个变量的过程,使学生理解用抛物线知识解决最值问题的思路.2.学会运用抛物线知识分析和解决实际问题.过程与方法:认识数学与人类生活的密切联系及对人类历史发展的作用,发展我们运用数学知识解决实际问题的能力.情感态度:了解数学的价值,增加对数学的理解和学好数学的信心.教学重点:能够分析和表示实际问题中变量之间的二次函数关系。教学难点:二次函数最值在实际中生活中的应用。教学过程一、情境导入问题1 同学们完成下列问题:已知y=x2-2x-3x= 时,y有最 值,其值为 ;当-1x4时,y最小值为 ,y最大值为 .二、思考探究1、最大面积阅读教材P30,回答下列问题.(1)窗框的透光面积S与x之间的关系式是什么?(2)如何由关系式求出最大面积?2 、最大利润问题例1、讲解教材P31例题例2、某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件.将这种商品的售价降低多少时,能使销售利润最大?分析找出进价,售价,销售,总利润之间的关系,建立二次函数,再求最大值.列表分析如下:关系式:每件利润=售价-进价,总利润=每件利润销量.解:设降价x元,总利润为y元,由题意得y=(10-x-8)(100+100x)=-100x2+100x+200=-100(x-0.5)2+225.当x=0.5时,总利润最大为225元.当商品的售价降低0.5元时,销售利润最大.三、深化理解某经销店为某工厂代销一种建筑材料,当每吨售价为260元时,月销售量为45吨,该经销店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每吨售价下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出1吨建筑材料共需支付厂家及其他费用100元,设每吨材料售价为x(元),该经销店的月利润为y(元).当每吨售价是240元时,计算此时的月销售量;求出y与x的函数关系式(不要求写出x的取值范围);该经销店要获得最大月利润,售价应定为每吨多少元?小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.解:45+ 7.5=60(吨).y=(x-100)(45+7.5).化简,得y=-x2+315x-24 000.y=-x2+315x-24 000=-(x-210)2+9 075.此经销店要获得最大月利润,材料的售价应定为每吨210元.我认为,小静说得不对.理由:当月利润最大时,x为210元,每月销售额W=x(45+7.5=- (x-160)2+19 200.当x为160元时,月销售额W最大.当x为210元时,月销售额W不是最大的.小静说得不对.四、课

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论