4.5曲面与空间曲线.ppt_第1页
4.5曲面与空间曲线.ppt_第2页
4.5曲面与空间曲线.ppt_第3页
4.5曲面与空间曲线.ppt_第4页
4.5曲面与空间曲线.ppt_第5页
已阅读5页,还剩69页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 解 例4 判断直线L与平面的位置关系 直线L的参数方程 代入到平面中 整理为 当时 交点是 即线面平行 L与有唯一的交点 2 4 5曲面与空间曲线 一 空间曲面的概念 二 旋转曲面 三 柱面 四 二次曲面 五 空间曲线 3 水桶的表面 台灯的罩子面等 曲面在空间解析几何中被看成是点的几何轨迹 曲面方程的定义 曲面的实例 一 曲面方程的概念 4 以下给出几例常见的曲面 解 根据题意有 所求方程为 5 解 根据题意有 所求方程为 6 根据题意有 化简得所求方程 解 7 以上几例表明研究空间曲面有两个基本问题 2 已知曲面的方程 研究曲面形状 讨论建立旋转曲面 柱面的曲面方程 讨论二次曲面的图形 1 已知曲面作为点的轨迹时 求曲面方程 8 以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面 二 旋转曲面 定义 这条定直线叫旋转曲面的轴 播放 9 以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面 定义 这条定直线叫旋转曲面的轴 二 旋转曲面 10 以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面 定义 这条定直线叫旋转曲面的轴 二 旋转曲面 11 以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面 定义 这条定直线叫旋转曲面的轴 二 旋转曲面 12 以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面 二 旋转曲面 定义 这条定直线叫旋转曲面的轴 13 以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面 二 旋转曲面 定义 这条定直线叫旋转曲面的轴 14 以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面 二 旋转曲面 定义 这条定直线叫旋转曲面的轴 15 以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面 二 旋转曲面 定义 这条定直线叫旋转曲面的轴 16 以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面 二 旋转曲面 定义 这条定直线叫旋转曲面的轴 17 以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面 二 旋转曲面 定义 这条定直线叫旋转曲面的轴 18 以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面 二 旋转曲面 定义 这条定直线叫旋转曲面的轴 19 以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面 二 旋转曲面 定义 这条定直线叫旋转曲面的轴 20 以一条平面曲线绕其平面上的一条直线旋转一周所成的曲面称为旋转曲面 二 旋转曲面 定义 这条定直线叫旋转曲面的轴 21 旋转过程中的特征 如图 将代入 得方程 22 注 坐标平面上的曲线绕坐标轴旋转所得旋转曲面方程 只要将原曲线方程中绕坐标轴的变量不变 另一个变量改为其余两个变量的平方和的平方根 23 例4 将下列各曲线绕对应的轴旋转一周 求生成的旋转曲面的方程 旋转双曲面 解 24 旋转椭球面 旋转抛物面 解 解 25 播放 三 柱面 观察柱面的形成过程 这条定曲线C叫柱面的准线 动直线L叫柱面的母线 定义 平行于定直线并沿定曲线移动的直线所形成的曲面称为柱面 26 定义 三 柱面 观察柱面的形成过程 平行于定直线并沿定曲线移动的直线所形成的曲面称为柱面 这条定曲线C叫柱面的准线 动直线L叫柱面的母线 27 观察柱面的形成过程 三 柱面 定义 平行于定直线并沿定曲线移动的直线所形成的曲面称为柱面 这条定曲线C叫柱面的准线 动直线L叫柱面的母线 28 观察柱面的形成过程 三 柱面 定义 平行于定直线并沿定曲线移动的直线所形成的曲面称为柱面 这条定曲线C叫柱面的准线 动直线L叫柱面的母线 29 观察柱面的形成过程 三 柱面 定义 平行于定直线并沿定曲线移动的直线所形成的曲面称为柱面 这条定曲线C叫柱面的准线 动直线L叫柱面的母线 30 观察柱面的形成过程 三 柱面 定义 平行于定直线并沿定曲线移动的直线所形成的曲面称为柱面 这条定曲线C叫柱面的准线 动直线L叫柱面的母线 31 观察柱面的形成过程 三 柱面 定义 平行于定直线并沿定曲线移动的直线所形成的曲面称为柱面 这条定曲线C叫柱面的准线 动直线L叫柱面的母线 32 观察柱面的形成过程 三 柱面 定义 平行于定直线并沿定曲线移动的直线所形成的曲面称为柱面 这条定曲线C叫柱面的准线 动直线L叫柱面的母线 33 观察柱面的形成过程 三 柱面 定义 平行于定直线并沿定曲线移动的直线所形成的曲面称为柱面 这条定曲线C叫柱面的准线 动直线L叫柱面的母线 34 观察柱面的形成过程 三 柱面 定义 平行于定直线并沿定曲线移动的直线所形成的曲面称为柱面 这条定曲线C叫柱面的准线 动直线L叫柱面的母线 35 观察柱面的形成过程 三 柱面 定义 平行于定直线并沿定曲线移动的直线所形成的曲面称为柱面 这条定曲线C叫柱面的准线 动直线L叫柱面的母线 36 观察柱面的形成过程 三 柱面 定义 平行于定直线并沿定曲线移动的直线所形成的曲面称为柱面 这条定曲线C叫柱面的准线 动直线L叫柱面的母线 37 观察柱面的形成过程 三 柱面 定义 平行于定直线并沿定曲线移动的直线所形成的曲面称为柱面 这条定曲线C叫柱面的准线 动直线L叫柱面的母线 38 柱面举例 抛物柱面 平面 39 椭圆柱面 圆柱面 40 从柱面方程看柱面的特征 其他类推 椭圆柱面 轴 双曲柱面 轴 抛物柱面 轴 例如 41 例5 解 一般柱面方程的建立 42 二次曲面的定义 三元二次方程所表示的曲面 相应地平面被称为一次曲面 讨论二次曲面性状 用截痕法 用坐标面和平行于坐标面的平面与曲面相截 考察其交线 即截痕 的形状 然后加以综合 从而了解曲面的全貌 以下用截痕法讨论几种特殊的二次曲面 四 二次曲面 43 1 椭球面 椭球面与三个坐标面的交线 图形有界 并且关于坐标平面对称 44 椭圆截面的大小随平面位置的变化而变化 椭球面与平面的交线为椭圆 同理 与平面x k和y k的交线也是椭圆 当k由0变到c时 椭圆由大变小 最后缩成一点 45 椭球面的几种特殊情况 旋转椭球面 由椭圆绕轴旋转而成 方程可写为 46 球面 截面上圆的方程 方程可写为 旋转椭球面与椭球面的区别 与平面的交线为圆 47 2 双曲面 单叶双曲面 1 用坐标面与曲面相截 截得中心在原点的椭圆 48 与平面的交线为椭圆 2 用坐标面与曲面相截 截得中心在原点的双曲线 实轴与轴相合 虚轴与轴相合 49 双曲线的中心都在轴上 与平面的交线为双曲线 实轴与轴平行 虚轴与轴平行 实轴与轴平行 虚轴与轴平行 截痕为一对相交于点的直线 50 截痕为一对相交于点的直线 3 用坐标面 与曲面相截均可得双曲线 平面的截痕是两对相交直线 51 单叶双曲面图形 52 双叶双曲面 53 3 抛物面 与同号 椭圆抛物面 图形位于xoy平面的上方 并关于yoz及zox坐标面对称 54 当k变动时 这种椭圆的中心都在z轴上 与平面的交线为椭圆 与平面z k k 0 不相交 用截痕法讨论 1 用坐标面与曲面相截 截得一点 即坐标原点 设 原点也叫椭圆抛物面的顶点 与同号 55 与平面y k的交线为抛物线 2 用坐标面与曲面相截 截得抛物线 与同号 56 3 用坐标面 x k与曲面相截 均可得抛物线 同理当时可类似讨论 57 椭圆抛物面的图形如下 58 特殊地 当时 方程变为 旋转抛物面 由面上的抛物线绕它的轴旋转而成的 与平面z k k 0 的交线为圆 当k变动时 这种圆的中心都在z轴上 59 与同号 双曲抛物面 马鞍面 用截痕法讨论 设 图形如下 60 4 二次锥面 61 空间曲线的一般方程 交面式 特点 曲线上的点都满足方程 满足方程的点都在曲线上 不在曲线上的点不能同时满足两个方程 空间曲线C可看作空间两曲面的交线 注表示同一条曲线的方程不唯一 1 空间曲线的一般方程 五 空间曲线 62 例7 方程组表示怎样的曲线 解 表示圆柱面 表示平面 交线为椭圆 例6 xoy平面上的曲线可看作是柱面f x y 0与平面z 0的交线 63 例8 方程组表示怎样的曲线 解 表示上半球面 表示圆柱面 交线如图 64 空间曲线的参数方程 2 空间曲线的参数方程 65 动点从A点出发 经过t时间 运动到M点 螺旋线的参数方程 取时间t为参数 解 66 消去变量z后得 曲线关于的投影柱面 设空间曲线的一般方程 以此空间曲线为准线 垂直于所投影的坐标面 投影柱面的特征 3 空间曲线在坐标面上的投影 67 如图 投影曲线的研究过程 空间曲线 投影曲线 投影柱面 68 类似地 可定义空间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论