一元二次方程覃栩.ppt_第1页
一元二次方程覃栩.ppt_第2页
一元二次方程覃栩.ppt_第3页
一元二次方程覃栩.ppt_第4页
一元二次方程覃栩.ppt_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

22 1一元二次方程 南宁十中覃栩 问题1要设计一座2m高的人体雕像 使雕像的上部 腰以上 与下部 腰以下 的高度比 等于下部与全部 全身 的高度比 雕像的下部应设计为多高 A C B 分析 如图 用线段AB表示这座人体雕像 AC为雕像的上部 BC为雕像的下部 根据题目的已知条件 得AC BC BC 2 2 X X 设雕像的下部高xm 于是得到方程 化简整理得 问题2有一块矩形铁皮 长100 宽50 在它的四角各切去一个正方形 然后将四周突出部分折起 就能制作一个无盖方盒 如果要制作的方盒的底面积为3600平方厘米 那么铁皮各角应切去多大的正方形 分析 设切去的正方形的边长为xcm 则盒底的长为 宽为 100 2x cm 50 2x cm 根据方盒的底面积为3600cm2 得 即 问题3要组织一次排球邀请赛 参赛的每两队之间都要比赛一场 根据场地和时间等条件 赛程计划安排7天 每天安排4场比赛 比赛组织者应邀请多少个队参加比赛 分析 全部比赛共 4 7 28场 设应邀请x个队参赛 每个队要与其他个队各赛1场 由于甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛 所以全部比赛共场 x 1 即 由上面三个问题 我们可以得到三个方程 上述三个方程有什么共同特点 与我们以前学过的一元一次方程和分式方程有什么区别 特点 都是整式方程 只含一个未知数 未知数的最高次数是2 1 上面三个方程整理后含有 未知数 它们的最高次数是 等号两边是式 一个 2 整 等号两边都是整式 只含有一个未知数 一元 并且未知数的最高次数是2 二次 的方程 叫做一元二次方程 一元二次方程的一般形式 一般地 任何一个关于x的一元二次方程都可以化为的形式 我们把 a b c为常数 a 0 称为一元二次方程的一般形式 为什么要限制a 0 b c可以为零吗 想一想 ax2 bx c 0 a 0 其中是二次项 a是二次项系数 bx是一次项 b是一次项系数 c是常数项 当b 0 c 0时 当b 0或c 0时 方程ax2 bx c 0 a 0 叫一般的一元二次方程 方程ax2 c 0 a 0 或ax2 bx 0都叫特殊的一元二次方程 判断下列方程是否为一元二次方程 1 x2 x 36 2 x3 x2 36 3 x 3y 36 5 x 1 0 例1 1 下列方程中哪些是一元二次方程 是一元二次方程的有 练习1 例2 将方程化成一元二次方程的一般形式 并写出其中的二次项系数 一次项系数及常数项 解 去括号 得 移项 合并同类项 得一元二次方程的一般形式 其中二次项系数为3 一次项系数为 8 常数项为 10 把下列方程化为一元二次方程的形式 并写出它的二次项系数 一次项系数和常数项 3x2 5x 1 0 x2 x 8 0 或 7x2 0 x 4 0 3 5 1 1 1 8 7 0 4 3 5 1 1 1 8 7 0 4 或7x2 4 0 7 0 4 7x2 4 0 练习2 1 本节学习的数学知识是 2 如何理解一元二次方程的一般形式 a 0 1 2 1 2 一元二次方程的概念 一元二次方程的一般形式 a 0 是成为一元二次方程的必要条件 找一元二次方程的二次项系数 一次项系数及常数项要先化为一般形式 1 关于x的方程 k 3 x2 2x 1 0 当k时 是一元二次方程 2 关于x的方程 k2 1 x2 2 k 1 x 2k 2 0 当k时 是一元二次方程 当k时 是一元一次方程 3 1 1 3 m为何值时 方程 m 1 xm2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论