




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.3多项式的乘法第2课时复杂多项式的乘法及应用知识点复杂多项式乘多项式的运算较复杂多项式相乘,仍然遵循“先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加”的法则注意 (1)多项式相乘要注意多项式每一项的符号;(2)多项式相乘的结果要化为最简计算:(x3)(2x2x7)探究一多项式乘多项式的简单应用 教材例5变式题解方程:(x1)(2x1)x(x2)x21.归纳总结 解方程时,方程两边均化成整式,再移项,合并同类项,系数化为1即可探究二利用多项式乘多项式解决实际问题 教材补充题一个长方体的长为x cm,宽为(2x3)cm,高为(x1)cm,求这个长方体的体积反思 若多项式(mx28x1)(23x)展开后不含x2项,求m的值一、选择题1下列计算正确的是()Aa2a3a6B5a(b3a2)5ab15a3C(ab)(a2b)a22b2D(x1)(x22)x32x22计算(x1)(x21)的结果是()Ax31 Bx3x2x1Cx3x1 Dx3x213如果(x4)(2x2x8)2x3mx2nx32,那么m,n的值分别是()Am9,n12 Bm9,n12Cm9,n12 Dm9,n124如果三角形的一边长为2a4,这条边上的高为2a2a1,那么这个三角形的面积为()A2a35a23a2 B4a36a26a4C(2a4)(2a2a1) D2a325要使(x2px2)(xq)的乘积中不含x2项,则p与q的关系是()A互为倒数 B互为相反数C相等 D关系不能确定6由m(abc)mambmc,可得(ab)(a2abb2)a3a2bab2a2bab2b3a3b3,即(ab)(a2abb2)a3b3.我们把这个等式叫做多项式乘法的立方公式下列应用这个公式进行的变形不正确的是()A(x4y)(x24xy16y2)x364y3 B(2xy)(4x22xyy2)8x3y3C(a1)(a2a1)a31 Dx327(x3)(x23x9)二、填空题7计算:(5b2)(2b1)_;(3a22)(3a2)_82015菏泽若x2xm(x3)(xn)对x恒成立,则n_9三个连续整数中,n是最小的一个,这三个数的乘积为_10(x33x24x1)(x22x3)的展开式中,x4的系数是_11已知一个梯形的上底是(xy)cm,下底是(5x3y)cm,高是(2xy)cm,则用含x,y的代数式表示梯形的面积为_ cm2.三、解答题12计算:(1)(a2)(a2)(2a1);(2)3(x22)3(x1)(x1);(3)(2ab)2(b2a1)(2a1)13确定下列各式中m的值(1)(x4)(x9)x2mx36;(2)(x3)(xp)x2mx36.14解方程:x(2x3)(x5)(x3)x21.15李老师刚买了一套2室2厅的新房,其结构如图333所示(单位:米)施工方已经把卫生间和厨房根据合同约定铺上了地板砖,李老师打算把卧室1铺上地毯,其余铺地板砖问:(1)他至少需要多少平方米的地板砖?(2)如果这种地板砖每平方米m元,那么李老师至少要花多少钱买地板砖?图333创新题 (1)计算下列各式:(x1)(x1)_;(x1)(x2x1)_;(x1)(x3x2x1)_(2)从上面的算式及计算结果,你发现了什么?请根据你发现的规律直接填写下面的空格(x1)(_)x61.(3)利用你发现的规律计算:(x1)(x6x5x4x3x2x1)_.(4)利用该规律计算详解详析教材的地位和作用本节内容是多项式与多项式相乘的提高和拓展,是整式乘法的综合应用本节内容是进一步学习乘法公式与因式分解的基础,因此本课时内容起着承上启下的作用教学目标知识与技能1.掌握复杂多项式与多项式相乘的法则及注意事项;2.会利用多项式与多项式相乘进行说理等过程与方法进一步培养学生思考与探索的能力,体会通过转化思想来解决问题的能力情感、态度与价值观在具体实例中体会用数学进行说理或化简的乐趣教学重点难点重点复杂多项式的相乘难点多项式与多项式相乘的综合应用易错点由于积的项数较多且比较复杂,导致合并同类项时发生错误【预习效果检测】解:(x3)(2x2x7)2x3x27x6x23x212x35x210x21.【重难互动探究】例1解:两边去括号,得2x2x2x1x22xx21.合并同类项,得2x23x12x22x1.化简,得5x2.所以原方程的解为x.例2解析 长方体体积的计算公式为V长宽高解:根据题意,这个长方体的体积为Vx(2x3)(x1)x(2x22x3x3)x(2x25x3)(2x35x23x)(cm3)【课堂总结反思】反思 (mx28x1)(23x)2mx23mx316x24x223x3mx3(2m24)x219x2.因为多项式展开后不含x2项,所以2m240,解得m12.点评 多项式相乘后不含某一项,说明合并同类项后此项的系数为零【作业高效训练】课堂达标1B2.B3.C4解析 A三角形的面积底高(2a4)(2a2a1)(a2)(2a2a1)2a3a2a4a22a22a35a23a2.5解析 C原式x3qx2px2pqx2x2qx3(pq)x2(2pq)x2q,由于不含x2项,故pq0,即pq.6C7答案 10b2b29a36a26a48答案 49答案 n33n22n10答案 111答案 (6x2xyy2)12解:(1)原式(a24)(2a1)2a3a28a4.(2)原式3x263(x21)3x263x239.(3)原式4a22ab2abb2(2ab2b22a2a2a1)4a24abb22ab2b22a2a2a12a22ab24aba1.13解:(1)因为(x4)(x9)x2mx36,所以x213x36x2mx36,所以m13.(2)因为(x3)(xp)x2mx36,所以x2(3p)x3px2mx36,所以解得所以m15.14解:2x23xx23x5x15x21.2x23xx23x5xx2115.5x14,解得x.所以原方程的解为x.15解:(1)用总面积减去厨房和卫生间的面积,再减去卧室1的面积即是所铺地板砖的面积,列式为5b5a(5b3b)(5a3a)(5a3a)2b
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度海绵城市建设施工履约保证金合同
- 高三试卷:江苏省常州市2024-2025学年高三上学期期中质量调研数学试题答案
- 二零二五年度水力发电机工程设计与心得总结合同
- 二零二五版地毯产品绿色家居定制化采购合同
- 2025版楼板浇注材料环保认证与检测合同
- 早期阅读课件
- 二零二五版船舶行业外包工安全培训及管理服务协议
- 二零二五年度钢结构预制构件生产与施工承包合同样本
- 二零二五年度会所装修工程合同范本指南
- 二零二五年度车辆维修配件供应合同
- GB/Z 42625-2023真空技术真空计用于分压力测量的四极质谱仪特性
- 人民医院心血管外科临床技术操作规范2023版
- 主要组织相容性复合体及其编码分子
- 助理工程师考试试题以及答案
- 送东阳马生序
- 2017年全国大学生数学建模A题
- 2023年专升本计算机题库含答案专升本计算机真题
- GB/T 1685-2008硫化橡胶或热塑性橡胶在常温和高温下压缩应力松弛的测定
- GB/T 16674.1-2016六角法兰面螺栓小系列
- 固定资产清查工作报告
- 住宅项目景观工程施工策划(图文并茂)
评论
0/150
提交评论