




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
_二次函数知识梳理知识点1 二次函数的图象和性质1.二次函数的定义与解析式(1)二次函数的定义 形如:f(x)ax2bxc (a0)的函数叫做二次函数.(2)二次函数解析式的三种形式一般式:f(x)_ ax2bxc (a0)_ _. 顶点式:f(x)_ a(xm)2n(a0)_ _.零点式:f(x)_ a(xx1)(xx2) (a0)_ _.点评:.求二次函数解析式的方法:待定系数法.根据所给条件的特征,可选择一般式、顶点式或零点式中的一种来求.已知三个点的坐标时,宜用一般式.已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.已知二次函数与x轴有两个交点,且横坐标已知时,选用零点式求f(x)更方便.2.二次函数的图象和性质图象函数性质a0定义域xR(个别题目有限制的,由解析式确定)值域a0a0y,)y(,a0时,图象与x轴有两个交点M1(x1,0)、M2(x2,0),|M1M2|x1x2|.知识点2 二次函数、一元二次方程及一元二次不等式之间的关系当的图像与x轴无交点无实根的解集为或者是R; 当的图像与x轴相切有两个相等的实根的解集为或者是R;当的图像与x轴有两个不同的交点有两个不等的实根 的解集为或者是。知识点3 一元二次方程实根分布的充要条件一般地对于含有字母的一元二次方程的实根分布问题,用图象求解,有如下结论:令()(同理讨论的结论)(1) x1, x2, x2,则(3) x1b, x2b,则(4) x1b (2xm恒成立,求实数m的取值范围.变式训练4:(1)已知, 如果对一切,恒成立,求实数的取值范围;如果对,恒成立,求实数的取值范围 (2)已知二次函数(R,0)如果0,1时,总有|试求的取值范围题型五二次函数与方程 例5已知二次函数(1)若abc,且f(1)=0,证明f(x)的图象与x轴有2个交点;(2) 在(1)的条件下,是否存在mR,使池f(m)= - a成立时,f(m+3)为正数,若存在,证明你的结论,若不存在,说明理由.(3)若对,有2个不等实根,证明必有一个根属于例6 二次函数 的零点分别为(1)证明 (2)证明(3)若满足不等式|,试求的取值范围.例7 已知二次函数 (1)若在区间-1,1内至少存在一个实数m,使得,求实数a的取值范围;(2)若对区间-1,1内的一切实数m都有,求实数a的取值范围。题型六二次函数与不等式例8已知函数f(x)和g(x)的图象关于原点对称,且f(x)x22x (1)求函数g(x)的解析式; (2)解不等式g(x)f(x)|x1|; (3)若h(x)g(x)f(x)1在1,1上是增函数,求实数的取值范围变式训练6:设a为实数,函数f(x)2x2(xa)|xa|.(1)若f(0)1,求a的取值范围;(2)求f(x)的最小值;一、选择题1.设abc0,二次函数f(x)ax2bxc的图象可能是 ( )2.函数f(x)x2mx1的图象关于直线x1对称的充要条件是 ()A.m2 B.m2 C.m1 D.m13.已知函数f(x)ax2(bc)x1 (a0)是偶函数,其定义域为ac,b,则点(a,b)的轨迹是()A.线段 B.直线的一部分C.点 D.圆锥曲线4.设二次函数f(x)ax22axc在区间0,1上单调递减,且f(m)f(0),则实数m的取值范围是()A.(,0 B.2,) C.(,02,) D.0,25.已知函数f(x)2mx22(4m)x1,g(x)mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正数,则实数m的取值范围是 ()A.(0,2) B.(0,8) C.(2,8) D.(,0)6.函数f(x)x2(2a1)|x|1的定义域被分成了四个不同的单调区间,则实数a的取值范围是() A.a B.a D.a0,12,则实数m的取值范围是_.13.若方程x211x30a0的两根均大于5,则实数a的取值范围是_.14.已知f(x)ax2bx3ab是偶函数,且其定义域为a1,2a,则yf(x)的值域为_.三、解答题15.是否存在实数a,使函数f(x)x22axa的定义域为1,1时,值域为2,2?若存在,求a的值;若不存在,说明理由.16.已知二次函数f(x)ax2bx (a,b为常数,且a0),满足条件f(1x)f(1x),且方程f(x)x有等根.(1)求f(x)的解析式;(2)是否存在实数m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年乡镇环保工作成效评价与考核标准
- 2025年互联网大厂产品经理面试秘籍面试预测题与实战指南
- 抢救车内管理课件
- 2025年旅行社服务合作协议书
- 2025年旋挖钻机项目合作计划书
- 2025年飞机维修船坞项目建议书
- 2025年低噪声对旋式局部通风机项目建议书
- 抗癫痫与抗惊厥药课件
- 抗生素使用相关课件
- 2023年山东省滨州市经开区中考语文三模试卷(含答案)
- 《高一数学开学第一课:学好高中数学》课件
- 五年级美术 《感受漫画造型》 公开课比赛一等奖
- 管理学基础(第3版)全套教学课件
- 红帽认证管理员RHCSA(习题卷1)
- 2021地质灾害治理工程施工质量验收规范
- 煤矿重大危险源的辨识与控制课件
- 劳务服务施工组织方案
- 08878动漫产业概论模拟试题答案
- 电子水准仪二等水准测量记录表
- 《水声学原理》8.1.1噪声和混响背景下信号的检测 - 噪声和混响背景下信号的检测
- 郭锡良《古代汉语》课件
评论
0/150
提交评论