全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7.22用坐标表示平移教学目标1、掌握坐标变化与图形平移的关系;2、能利用点的平移规律将平面图形进行平移,会根据图形上点的坐标的变化,来判定图形的移动过程。重点难点坐标变化与图形平移的关系是重点;坐标变化与图形平移的关系运用是难点。教学过程 一、导入新课上节课我们学习了用坐标表示地理位置,体现了直角坐标系在实际中的应用,本节课我们研究直角坐标系的另一个应用用坐标表示平移。二导学释疑1.图形的平移与图形上点的变化规律首先我们研究点的平移规律。如图,(1)将点A(2,3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,点A的坐标发生了什么变化?把点A向上平移4个单位长度呢? 将点A向右平移5个单位长度,横坐标增加了5个单位长度,纵坐标不变;将点A向上平移4个单位长度,纵坐标增加了4个单位长度,横坐标不变.(2)把点A向左或向下平移4个单位长度,点A的坐标发生了什么变化?将点A向左平移4个单位长度,横坐标减少了4个单位长度,纵坐标不变;将点A向下平移4个单位长度,纵坐标减少了4个单位长度,横坐标不变. 从点A的平移变化中,你知道在什么情况下,坐标不变吗?在什么情况下,坐标增加或减少吗? 将点向左右平移纵坐标不变,向上下平移横坐标不变;将点向右或向上平移几个单位长度,横坐标或纵坐标就增加几个单位长度;向左或向下平移几个单位长度,横坐标或纵坐标就减少几个单位长度。简单地表示为 点(x,y)点(x+a,y)向右平移a个单位长度点(x,y)点(xa,y)向左平移a个单位长度点(x,y)点(x,yb)向上平移a个单位长度点(x,y)点(x,yb )向下平移a个单位长度再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?2、图形上点的变化与图形平移的规律对一个图形进行平移,就是对这个图形上所有点的平移,因而这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移例 如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2)(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系? 解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到思考:(1)如果将这个问题中的“横坐标都减去6”“纵坐标都减去5”相应的变为“横坐标都加3”“纵坐标都加2”,分别能得出什么结论?画出得到的图形。(2)如果将三角形ABC三个顶点的横坐标都减去6,同时纵坐标都减去5,能得到什么结论?画出得到的图形。归纳上面的作图与分析,你能得到什么结论?在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,得到的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,得到的新图形就是把原图形向上(或下)平移a个单位长度。简单地表示为 点(x+a,y)图形向右平移a个单位长度点(xa,y)图形向左平移a个单位长度点(x,yb)图形向上平移a个单位长度度点(x,yb )图形向下平移a个单位长度四、巩固提升第53面练习五、课堂小结对一个图形进行平移,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年设备监理师之质量投资进度控制考试题库200道含答案【突破训练】
- 2026北京师范大学实验华夏女子中学新教师招聘历年真题汇编带答案解析
- 2025河北承德市公安局公开招聘警务辅助人员70名历年真题汇编附答案解析
- 2025河南洛阳国宏资本创业投资有限公司社会招聘7人备考公基题库带答案解析
- 2026中国外汇交易中心(全国银行间同业拆借中心)招聘10人模拟试卷带答案解析
- 2025青岛市生态环保创新中心遴选工作人员30人参考题库附答案解析
- 2025云南昆明市延安医院招聘见习人员13人(第二批)笔试模拟试卷带答案解析
- 2025黑龙江双鸭山市煤炭生产安全管理局招聘急需紧缺事业单位工作人员25人笔试模拟试卷带答案解析
- 2025北京大学先进制造与机器人学院招聘劳动合同制工作人员1人备考公基题库带答案解析
- 2025重庆轮船集团有限公司交运游轮分公司招聘25人笔试备考试卷带答案解析
- 真菌性鼻鼻窦炎课件
- 既有线路基帮宽施工方案(锦承-改)
- ZZ024 美术造型赛题-2023年全国职业院校技能大赛拟设赛项赛题完整版(10套)
- 115个低风险病种ICD-10(2019 v2.0)编码表、专科医院单病种(术种)目录
- xx县副科选拔真题(干部选拔)
- GA 254-2022警服内穿衬衣
- 电力设备预防性试验规程
- GB 2758-2012食品安全国家标准发酵酒及其配制酒
- 高中数学《基于问题链的数学教学探索》课件
- 新视野大学英语(第三版)读写教程Book4-Unit1-Section-A-Love-and-logic-The-story-of-a-fallacy课件
- 大学生金融知识竞赛参考题库
评论
0/150
提交评论