已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2016 高一期中填空选择专题训练姓名:_班级:_1.已知全集U=R,A=y|y=2x+1,B=x|lnx0,则AB=()Ax|x1Bx|x1Cx|0x1D2.当a1时,在同一坐标系中,函数y=ax与y=logax的图象为()A B C . D3.已知函数f(x)=x|x|,则()Af(x)既是奇函数又是增函数Bf(x)既是偶函数又是增函数Cf(x)既是奇函数又是减函数Df(x)既是偶函数又是减函数4.已知函数f(x)=,则ff(2)=()A2B4 C8 D165.已知lga+lgb=0(a0,b0且a1,b1),则函数f(x)=ax与函数g(x)=logbx的图象可能是()A B C D6.已知函数f(x)是定义在区间0,+)上的增函数,则满足f(2x1)f()的x的取值范围是()A(,)B,)C(,)D,)7.定义在R的奇函数f(x),当x0时,f(x)=x2+x,则f(2)等于()A4 B6 C4 D68.函数f(x)=e2+x2的零点所在的区间是()A(2,1)B(1,0)C(1,2) D(0,1)9.,则P,Q,R的大小关系是()AQPRBPQRCQRPDPRQ10.若偶函数f(x)在区间(,0上单调递减,且f(7)=0,则不等式(x1)f(x)0的解集是()A(,1)(1,+)B(,7)(7,+)C(7,1)(7,+)D(7,1(7,+)11.函数f(x)=ln(x2+1)的图象大致是()A B C D12.下列函数中,在区间(0,1)上是增函数的是()Ay=|x| By=3xCy=Dy=x2+413.定义在R上的函数f(x)满足f(2+x)=f(2x),若当x(0,2)时,f(x)=2x,则f(3)= 14.若函数f(x)=ax(0a1)在1,2上的最大值为4,最小值为m,则m= 15.计算:log89log32lg4lg25=16.设且,若函数的反函数的图像经过定点,则点的坐标是_17、化简求值:(1);(2)试卷答案1.B【考点】交集及其运算【专题】计算题;集合思想;定义法;集合【分析】求解函数的值域化简A,求解对数不等式化简B,然后取交集得答案【解答】解:A=y|y=2x+1=(1,+),B=x|lnx0=(1,+),AB=(1,+)故选:B【点评】本题考查交集及其运算,考查了函数值域的求法,训练了对数不等式的解法,是基础题2.C【考点】函数的图象【分析】当a1时,根据函数y=ax在R上是减函数,而y=logax的在(0,+)上是增函数,结合所给的选项可得结论【解答】解:当a1时,根据函数y=ax在R上是减函数,故排除A、B;而y=logax的在(0,+)上是增函数,故排除D,故选:C3.C【考点】奇偶性与单调性的综合【分析】作出函数f(x)=x|x|的图象,由函数的图象可得结论【解答】解:作出函数f(x)=x|x|的图象,如图所示由函数的图象可得,f(x)既是奇函数又是减函数,故选:C4.D【考点】分段函数的应用【分析】直接利用分段函数,逐步求解函数值即可【解答】解:函数f(x)=,则ff(2)=f(22)=f(4)=42=16故选:D5.B【考点】对数函数的图象与性质;指数函数的图象与性质【分析】由lga+lgb=0(a0,b0且a1,b1),得ab=1,从而得到g(x)=logax,与f(x)=ax互为反函数,从而得到答案【解答】解:lga+lgb=0(a0,b0且a1,b1),ab=1,b=,g(x)=logbx的=logax,函数f(x)=ax与函数g(x)=logbx互为反函数,二者的图象关于直线y=x对称,故选B6.D【考点】函数单调性的性质【专题】函数的性质及应用【分析】由函数的单调性的性质可得 02x1,由此求得x的取值范围【解答】解:函数f(x)是定义在区间0,+)上的增函数,则满足f(2x1)f(),02x1,解得x,故选D【点评】本题主要考查函数的单调性的性质,属于基础题7.B【考点】函数奇偶性的性质【专题】计算题;方程思想;转化法;函数的性质及应用【分析】根据函数奇偶性的性质进行转化求解即可【解答】解:定义在R的奇函数f(x),当x0时,f(x)=x2+x,f(2)=f(2)=(2)22=6,故选:B【点评】本题主要考查函数值的计算,利用函数奇偶性的性质进行转化是解决本题的关键8.D【考点】二分法求方程的近似解【专题】计算题;函数思想;转化法;函数的性质及应用【分析】易知函数f(x)=ex+x2是增函数且连续,从而判断【解答】解:易知函数f(x)=ex+x2是增函数且连续,且f(0)=1+020,f(1)=2+120,f(0)f(1)0,函数f(x)=e2+x2的零点所在的区间是(0,1)故选:D【点评】本题考查了函数的单调性及函数的零点的应用,属于基础题9.D【考点】对数值大小的比较【分析】5x6,可得P=1利用几何画板可得:y=log2x,y=的图象可知:4x16时,2log2x即可得出【解答】解:5x6,P=1利用几何画板可得:y=log2x,y=的图象可知:当x=4时, =log2x=2当x=16时, =log2x=4当4x16时,2log2x综上可得:PRQ故选:D10.C【考点】奇偶性与单调性的综合【专题】函数的性质及应用【分析】根据函数奇偶性和单调性之间的关系,将不等式进行转化即可【解答】解:偶函数f(x)在区间(,0上单调递减,且f(7)=0,f(x)在区间0,+)上单调递增,且f(7)=f(7)=0,即f(x)对应的图象如图:则不等式(x1)f(x)0等价为:或,即或,即x7或7x1,故选:C【点评】本题主要考查不等式的求解,利用函数奇偶性和单调性的性质是解决本题的关键11.A【考点】函数的图象【专题】函数的性质及应用【分析】x2+11,又y=lnx在(0,+)单调递增,y=ln(x2+1)ln1=0,函数的图象应在x轴的上方,在令x取特殊值,选出答案【解答】解:x2+11,又y=lnx在(0,+)单调递增,y=ln(x2+1)ln1=0,函数的图象应在x轴的上方,又f(0)=ln(0+1)=ln1=0,图象过原点,综上只有A符合故选:A【点评】对于函数的选择题,从特殊值、函数的性质入手,往往事半功倍,本题属于低档题12.A【考点】函数单调性的判断与证明【专题】阅读型【分析】本题考查的是对不同的基本初等函数判断在同一区间上的单调性的问题在解答时,可以结合选项逐一进行排查,排查时充分考虑所给函数的特性:一次函数性、幂函数性、二次函数性还有反比例函数性问题即可获得解答【解答】解:由题意可知:对A:y=|x|=,易知在区间(0,1)上为增函数,故正确;对B:y=3x,是一次函数,易知在区间(0,1)上为减函数,故不正确;对C:y=,为反比例函数,易知在(,0)和(0,+)为单调减函数,所以函数在(0,1)上为减函数,故不正确;对D:y=x2+4,为二次函数,开口向下,对称轴为x=0,所以在区间(0,1)上为减函数,故不正确;故选A【点评】此题是个基础题本题考查的是对不同的基本初等函数判断在同一区间上的单调性的问题在解答的过程当中充分体现了对不同基本初等函数性质的理解、认识和应用能力值得同学们体会反思13.2【考点】函数的值【分析】化简f(3)=f(2+1)=f(1),从而解得【解答】解:f(3)=f(2+1)=f(21)=f(1)=21=2,故答案为:214.2或【考点】指数函数的图象与性质【专题】函数思想;综合法;函数的性质及应用【分析】按a1,0a1两种情况进行讨论:借助f(x)的单调性及最大值先求出a值,再求出其最小值即可【解答】解:当a1时,f(x)在1,2上单调递增,则f(x)的最大值为f(2)=a2=4,解得:a=2,最小值m=f(1)=;当0a1时,f(x)在1,2上单调递减,则f(x)的最大值为f(1)=4,解得a=,此时最小值m=f(2)=a2=,故答案为:2或【点评】本题考查指数函数的单调性及其应用,考查分类讨论思想,对指数函数f(x)=ax(a0,a1),当a1时f(x)递增;当0a1时f(x)递减15.【考点】对数的运算性质【专题】函数的性质及应用【分析】根据对数的运算性质计算即可【解答】解:log89log32lg4lg25=log23log32lg100=2=,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中国真空包装袋行业市场前景预测及投资价值评估分析报告
- 2026年中国伺服电动折弯机行业市场规模及投资前景预测分析报告
- 2025北京工业大学财务处劳务派遣用工人员招聘考试笔试参考题库附答案解析
- 2025年陕西广济堂医药集团股份有限公司招聘考试笔试参考题库附答案解析
- 2026福建省宁德市蕉城区消防大队招聘考试笔试模拟试题及答案解析
- 2025合肥工业大学管理学院智能系统与智能决策团队科研助理岗位招聘3人考试笔试备考试题及答案解析
- 合同变更2025年售后服务协议
- 2025年科研合作成果分配合同协议
- 中耳炎治疗护理方案
- 泌尿系感染护理流程
- 《石墨烯新材料》课件
- 阶段性测试卷(范围:第一、二、三章)(基础篇)(秋季讲义)(人教A版2019必修第一册)
- 新一代信息技术产业发展新趋势与关键路径研究
- 数学期中模拟测试卷八年级上册(考试范围:第12-14章)(原卷版)
- 坐井观天二年级上册教学设计方案
- 【历史】秦末农民大起义课件 2024-2025学年统编版七年级历史上册
- 风电场与养殖场生态互补关系研究
- 2024版恶性肿瘤患者营养治疗指南解读课件
- 初中道德与法治教师教学能力水平考核测试试题(含答案)
- 2024年共青团入团积极分子团校结业考试试题库及答案
- 大型活动交通保障方案
评论
0/150
提交评论