免费预览已结束,剩余23页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020年中考数学 三轮冲刺培优练 压轴题集训题 二如图,抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C(0,3)(1)求抛物线的函数表达式;(2)如图,连接AC,点P在抛物线上,且满足PAB=2ACO求点P的坐标;(3)如图,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由在平面直角坐标系中,已知抛物线y=x2+bx+c的顶点M的坐标为(1,4),且与x轴交于点A,点B(点A在点B的左边),与y轴交于点C(1)填空:b= ,c= ,直线AC的解析式为 ;(2)直线x=t与x轴相交于点H当t=3时得到直线AN(如图1),点D为直线AC下方抛物线上一点,若COD=MAN,求出此时点D的坐标;当3t1时(如图2),直线x=t与线段AC,AM和抛物线分别相交于点E,F,P试证明线段HE,EF,FP总能组成等腰三角形;如果此等腰三角形底角的余弦值为,求此时t的值如图,二次函数y=x2+bx+c的图象交x轴于A(1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒(1)求二次函数的解析式;(2)如图1,当BPQ为直角三角形时,求t的值;(3)如图2,当t2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由如图,抛物线y=ax2+bx+c与x轴交于点A(1,0),点B(3,0),且OB=OC(1)求抛物线的解析式;(2)点P在抛物线上,且POB=ACB,求点P的坐标;(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E求DE的最大值;点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形如图,抛物线 y=ax2+bx+c(a0)经过点A(-3,0)、B(1,0)、C(-2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与MAO相似?若存在,求点P的坐标;若不存在,请说明理由.om把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中ABC=DEF=90,C=F=45,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点D旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q(1)如图(1),当射线DF经过点B,即点Q与点B重合时,易证APDCDQ.此时,APCQ= (2)将三角板DEF由图(1)所示的位置绕点O沿逆时针方向旋转,设旋转角为.其中090,问APCQ的值是否改变?说明你的理由(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式(图(2),图(3)供解题用) 已知抛物线y=ax2+bx+3经过点A(1,0)和点B(3,0),与y轴交于点C,点P为第二象限内抛物线上的动点(1)抛物线的解析式为 ,抛物线的顶点坐标为 ;(2)如图1,连接OP交BC于点D,当SCPD:SBPD=1:2时,请求出点D的坐标;(3)如图2,点E的坐标为(0,1),点G为x轴负半轴上的一点,OGE=15,连接PE,若PEG=2OGE,请求出点P的坐标;(4)如图3,是否存在点P,使四边形BOCP的面积为8?若存在,请求出点P的坐标;若不存在,请说明理由如图,抛物线y=ax2+bx(a0)经过经过点A(2,0),点B(3,3),BCx轴于点C,连接OB,等腰直角三角形DEF的斜边EF在x轴上,点E的坐标为(4,0),点F与原点重合(1)求抛物线的解析式;(2)DEF以每秒1个单位长度的速度沿x轴正方向移动,运动时间为t秒,当点D落在BC边上时停止运动,求点D落在抛物线上时点D的坐标;设DEF与OBC的重叠部分的面积为S,求出S关于t的函数关系式如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=0.5x2-3.5x-4经过A、B两点.若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连结PA、PB. 设直线l移动的时间为t(0t4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积. 如图,在平面直角坐标系中,ABC是直角三角形,ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D(1)b= ,c= ;(2)点E是RtABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在一点P,使EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由如图,已知抛物线经过点A(2,0)、B(4,0)、C(0,8)(1)求抛物线的解析式及其顶点D的坐标;(2)直线CD交x轴于点E,过抛物线上在对称轴的右边的点P,作y轴的平行线交x轴于点F,交直线CD于M,使PM=0.2EF,请求出点P的坐标;(3)将抛物线沿对称轴平移,要使抛物线与(2)中的线段EM总有交点,那么抛物线向上最多平移多少个单位长度,向下最多平移多少个单位长度 如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D(1)求抛物线的函数表达式;(2)求直线BC的函数表达式; (3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限 当线段PQ=0.75AB时,求tanCED的值; 当以C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标 如图,在平面直角坐标系中,二次函数y=-x2+bx+c的图象与x轴交于A、B两点,与y轴交于C(0,3),A点在原点的左侧,B点的坐标为(3,0)点P是抛物线上一个动点,且在直线BC的上方 (1)求这个二次函数的表达式(2)连接PO、PC,并把POC沿CO翻折,得到四边形POPC,那么是否存在点P,使四边形POPC为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由(3)当点P运动到什么位置时,四边形 ABPC的面积最大,并求出此时点P的坐标和四边形面积的最大值. 如图,矩形的边OA在x轴上,边OC在y轴上,点B的坐标为(10,8),沿直线OD折叠矩形,使点A正好落在BC上的E处,E点坐标为(6,8),抛物线y=ax2+bx+c经过O、A、E三点(1)求此抛物线的解析式;(2)求AD的长;(3)点P是抛物线对称轴上的一动点,当PAD的周长最小时,求点P的坐标如图,抛物线y=0.5x21.5x+(64k)(其中k为正整数)与x轴相交于两个不同的点A、B(点A位于点B的左侧),与y轴相交于点C,连结AC、BC(1)求k的值;(2)如图,设点D是线段AC上的一动点,作DEx轴于点F,交抛物线于点E,求线段DE长度的最大值;(3)如图,抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与ABC相似?若存在,求出点M的坐标;若不存在,请说明理由参考答案解: 解:(1)抛物线y=x2+bx+c的顶点M的坐标为(1,4),解得:,抛物线解析式为:y=x2+2x3,令y=0,得:x2+2x3=0,解得:x1=1,x2=3,A(3,0),B(1,0),令x=0,得y=3,C(0,3),设直线AC的解析式为:y=kx+b,将A(3,0),C(0,3)代入,得:,解得:,直线AC的解析式为:y=x3;故答案为:2,3,y=x3(2)设点D的坐标为(m,m2+2m3),COD=MAN,tanCOD=tanMAN,=,解得:m=,3m0,m=,故点D的坐标为(,2);设直线AM的解析式为y=mx+n,将点A(3,0)、M(1,4)代入,得:,解得:,直线AM的解析式为:y=2x6,当x=t时,HE=(t3)=t+3,HF=(2t6)=2t+6,HP=(t2+2t3),HE=EF=HFHE=t+3,FP=t24t3,HE+EFFP=2(t+3)+t2+4t+3=(t+3)20,HE+EFFP,又HE+FPEF,EF+FPHE,当3t1时,线段HE,EF,FP总能组成等腰三角形;由题意得: =,即=,整理得:5t2+26t+33=0,解得:t1=3,t2=,3t1,t=解:(1)二次函数y=x2+bx+c的图象经过A(1,0)、B(3,0)两点,解得二次函数的解析式是:y=x22x3(2)y=x22x3,点C的坐标是(0,3),BC=3,设BC所在的直线的解析式是:y=mx+n,则,解得BC所在的直线的解析式是:y=x3,经过t秒,AP=t,BQ=t,点P的坐标是(t1,0),设点Q的坐标是(x,y),OB=OC=3,OBC=OCB=45,则y=sin45=t,BP=t,x=3t,点Q的坐标是(3t,t),如图1,当QPB=90时,点P和点Q的横坐标相同,点P的坐标是(t1,0),点Q的坐标是(3t,t),t1=3t,解得t=2,即当t=2时,BPQ为直角三角形如图2,当PQB=90时,PBQ=45,BP=,BP=3(t1)=4t,BQ=,4t=即4t=2t,解得t=,即当t=时,BPQ为直角三角形综上,可得当BPQ为直角三角形,t=或2(3)如图3,延长MQ交抛物线于点N,H是PQ的中点,设PQ所在的直线的解析式是y=cx+d,点P的坐标是(t1,0),点Q的坐标是(3t,t),解得PQ所在的直线的解析式是y=x+,点M的坐标是(0,),PQ的中点H的坐标是(1,)假设PQ的中点恰为MN的中点,120=2,=,点N的坐标是(2,),又点N在抛物线上,=22223=3,解得t=或t=(舍去),当t2时,延长QP交y轴于点M,在抛物线上不存在一点N,使得PQ的中点恰为MN的中点解:解:解:(1)A=C=45,APD=QDC=90,APDCDQAP:CD=AD:CQ即APCQ=ADCD,AB=BC=4,斜边中点为O,AP=PD=2,APCQ=24=8;(2)APCQ的值不会改变理由如下:在APD与CDQ中,A=C=45,APD=180-45-(45+)=90-,CDQ=90-APD=CDQAPDCDQAPCQ=ADCD=AD2=(AC)2=8(3)情形1:当045时,2CQ4,即2x4,此时两三角板重叠部分为四边形DPBQ,过D作DGAP于G,DNBC于N,DG=DN=2由(2)知:APCQ=8得AP=于是y=ABBC-CQDN-APDG=8-x-(2x4)情形2:当4590时,0CQ2时,即0x2,此时两三角板重叠部分为DMQ,由于AP=,PB=-4,易证:PBMDNM, 即 解得BM=MQ=4-BM-CQ=4-x-于是y=MQDN=4-x-(0x2)综上所述,当2x4时,y=8-x-当0x2时,y=4-x- 解: 解:(1)根据题意得:,解得a=1,b=2,故抛物线解析式是y=x22x;(2)点E的坐标为(4,0),EF=4,DEF是等腰直角三角形,点D的纵坐标为2,当点D在抛物线上时:x22x=2,解得:x1=1+,x2=1,点D落在抛物线上时点D的坐标为:(1+,2)或(1,2);有3种情况:()当0t3时,DEF与OBC重叠部分为等腰直角三角形,如图1:S=t2;()当3t4时,DEF与OBC重叠部分是四边形,如图2:S=t2+3t;()当4t5时,DEF与OBC重叠部分是四边形,如图3:S=t2+3t解:解: 解:(1)根据题意可设抛物线的解析式为y=a(x+2)(x4)点C(0,8)在抛物线y=a(x+2)(x4)上,8a=8a=1y=(x+2)(x4)=x22x8=(x1)29抛物线的解析式为y=x22x8,顶点D的坐标为(1,9)(2)如图,设直线CD的解析式为y=kx+b解得:直线CD的解析式为y=x8当y=0时,x8=0,则有x=8点E的坐标为(8,0)设点P的坐标为(m,n),则PM=(m22m8)(m8)=m2m,EF=m(8)=m+8PM=0.2EF,m2m=0.2(m+8)整理得:5m26m8=0(5m+4)(m2)=0解得:m1=0.8,m2=2点P在对称轴x=1的右边,m=2此时,n=22228=8点P的坐标为(2,8)(3)当m=2时,y=28=10点M的坐标为(2,10)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海底管道防腐工合规化技术规程
- 打胶工10S考核试卷含答案
- 函数的图象-2026年高考数学一轮总复习课时检测训练(人教A版)含解析
- 贵州省黔南布依族苗族自治州2024-2025学年七年级上学期期末地理试题
- 河南省新乡市卫辉市2024-2025学年六年级上学期阶段数学试卷(含答案)
- 教育新纪元:创新之道
- 教育革新的未来之路
- 分析材料内容-2025年中考语文非连续性文本阅读答题公式
- 第22课《伟大的悲剧》(练习)-2022-2023学年部编版(五四制)七年级语文下册(上海专用)原卷版+解析
- 《openEuler系统管理与服务部署》课件 项目二 - 03-系统软件包管理
- 换产换型管理办法
- 燃气执法管理办法
- 酒店食品健康管理办法
- 桩基检测安全培训
- 资产接收方案(3篇)
- 人物形象设计题库及答案
- 电信公司笔试题目及答案
- 轨道工程试题及答案
- 先天性甲状腺功能减退症诊治指南(2025)解读
- DB3401T 353-2024城镇雨污分流改造技术导则
- 奶牛体况评分Learn-to-Score-BCS
评论
0/150
提交评论