




已阅读5页,还剩108页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考物理压轴题汇编 如图所示 在盛水的圆柱型容器内竖直地浮着一块圆柱型的木块 木块的体积为V 高为h 其密度为水密度 的二分之一 横截面积为容器横截面积的二分之 一 在水面静止时 水高为2h 现用力缓慢地将木块压到容器底部 若水不会从容器中溢出 求压力所做的功 解 由题意知木块的密度为 2 所以木块未加压力时 将有一半浸 在水中 即入水深度为h 2 木块向下压 水面就升高 由于木块 横截面积是容器的1 2 所以当木块 上底面与水面平齐时 水面上升h 4 木块下降h 4 即 木块下降h 4 同时把它新占据的下部V 4体积的水重心升高3h 4 由功能关系可得这一阶段压力所做的功 vgh h gv h g v w 16 1 4244 1 压力继续把木块压到容器底部 在这一阶段 木块重心下降 同时底部被木块所占空 4 5h 间的水重心升高 由功能关系可得这一阶段压力所做的功 4 5h vgh h gv h vgw 16 10 4 5 24 5 2 整个过程压力做的总功为 vghvghvghwww 16 11 16 10 16 1 21 16分 为了证实玻尔关于原子存在分立能态的假设 历史上曾经有过著名的夫兰克 赫兹实验 其实验装置的原理示意图如图所示 由电子枪A射出的电子 射进一个容器B中 其中有氦气 电子在O点与氦原子发生碰撞后 进入速度选择器C 然后进入检测装置D 速度 选择器C由两个同心的圆弧形电极P1和P2组成 当两极间加以电压U时 只允许具有确定能 量的电子通过 并进入检测装置D 由检测装置测出电子产生的电流 I 改变电压U 同时测出I的数值 即可确定碰撞后进入速度选择 器的电子的能量分布 我们合理简化问题 设电子与原 子碰撞前原子是静止的 原子质 量比电子质量大很多 碰撞后 原子虽然稍微被碰动 但忽略这一能量损失 设原子未动 即忽略电子与原子碰撞过程中 原子得到的机械能 实验表明 在一定条件下 有些电 子与原子碰撞后没有动能损失 电子只改变运动方向 有些电子与原子碰撞时要损失动能 所损失的动能被原子吸收 使原子自身体系能量增大 1 设速度选择器两极间的电压为U V 时 允许通过的电子的动能为Ek eV 导出Ek eV 与U V 的函数关系 设通过选择器的电子的轨道半径r 20 0 cm 电极P1和P2之间隔d 1 00 cm 两极间场强大小处处相同 要说明为什么有些电子不能进入到接收器 2 当电子枪射出的电子动能Ek 50 0 eV时 改变电压U V 测出电流I A 得出下图所示的I U图线 图线表明 当电压U为5 00 V 2 88 V 2 72 V 2 64 V时 电流出现峰值 定性分析论述I U图线的物理意义 3 根据上述实验结果求出氦原子三个激发态的能级En eV 设其基态E1 0 解 1 当两极间电压为U时 具有速度v的电子进入速度选择器两极间的电场中 所受电场 力方向与v垂直 且大小不变 则电子在两极间做匀速圆周运动 电场力提供向心力 设电 子质量为m 电量为e 则电场力F qE eU d 根据牛顿第二定律有eU d mv2 R 解得电子动能Ek mv2 2 eUR 2d 10 0U eV 6分 即动能与电压成正比 此结果表明当两极间电压为U时 允许通过动能为10 0U eV 的电子 而那些大于或小于10U eV 的电子 由于受到过小或过大的力作用做趋心或离心运动而 分别落在两电极上 不能到达检测装置D 2 I U图线表明电压为5 0 V时有峰值 表明动能为50 0 eV的电子通过选择器 碰撞后电子动能等于入射时初动能 即碰撞中原子没有吸收能量 其能级不变 当电压为2 88 V 2 72 V 2 64 V时出现峰值 表明电子碰撞后 动能分别从50 0 eV 变为28 8 eV 27 2 eV 26 4 eV 电子通过选择器进入检测器 它们减小的动能分别在碰撞时被原子吸收 I U图线在特定能量处出现峰值 表明原子能量的吸收是有选择的 分立的 不连续的存在定 态 例如在电压为4 0 V时没有电流 表明碰撞后 电子中没有动能为40 0 eV的电子 即碰撞中 电子动能不可能只损失 50 0 40 0 eV 10 0 eV 也就是说氦原子不吸收10 0 eV的能量 即10 0 eV不满足能级差要求 4分 3 设原子激发态的能极为En E1 0 则从实验结果可知 氦原子可能的激发态能级中有 以下几个能级存在 50 0 28 8 eV 21 2 eV 50 0 27 2 eV 22 8 eV 50 0 26 4 eV 23 6 eV 6分 17 14分 如图甲 A B两板间距为 板间电势差为U C D两板间距离和板长均为L 2 L 两板间加一如图乙所示的电压 在S处有一电量为q 质量为m的带电粒子 经A B间电场加 速又经C D间电场偏转后进入一个垂直纸面向里的匀强磁场区域 磁感强度为B 不计重力 影响 欲使该带电粒子经过某路径后能返回S处 求 1 匀强磁场的宽度L 至少为多少 2 该带电 粒子周期性运动的周期 T 1 AB加速阶段 由动能定理得 2 2 1 mvqU 偏转阶段 带电粒子作类平抛运动 偏转时间 qUmL v L t2 1 侧移量 222 1 2 1 222 1 L qU m L mL qU aty 设在偏转电场中 偏转角为 则 1 2 21 v L mL qU v at v v tg y 即 4 由几何关系 45 sin45 2 L 则 L 2 12 注 L 也可由下面方法求得 粒子从S点射入到出偏转电场 电场力共做功为 2q 设出电场时速度为 有 解得 qUvm2 2 1 2 mqU 4 粒子在磁场中做圆周运动的半径 qB mqU qB vm R 2 qB mqU L 22 2 设粒子在加速电场中运动的时间为 则 qUmL vL 2 2 2 11 带电粒子在磁场中做圆周运动的周期 qB m T 2 12 实际转过的角度 2 3 13 在磁场中运动时间 qB m T 2 3 4 3 14 故粒子运动的周期T qB m qUm 2 3 2 15 评分标准 本题14分 第 1 问8分 其中 式各1分 式2分 式各1 分 第 2 问6分 其中 式各1分 式2分 12 13 14 15 22 13分 1951年 物理学家发现了 电子偶数 所谓 电子偶数 就是由一个负电 子和一个正电子绕它们的质量中心旋转形成的相对稳定的系统 已知正 负电子的质量均为 me 普朗克常数为h 静电力常量为k 假设 电子偶数 中正 负电子绕它们质量中心做 匀速圆周运动的轨道半径r 运动速度v及电子的质量满足量子化理论 2mevnrn nh 2 n 1 2 电子偶数 的能量为正负电子运动的动能和系统的电势能之和 已知两正负电 子相距为L时的电势能为Ep k 试求n 1时 电子偶数 的能量 L e2 18 13分 由量子化理论知 n 1时 2mev1r1 解得 2 h 1 1 4rm h v e 设此时电子运转轨道半径为r 由牛顿定律有me 2 1 2 1 2 1 4r e k r v 2 1 2 1 4 vmker e 由 联立可得v1 ke2 h 系统电势能Ep k 2mev12 2 1 2 22 2 2 rm ke e k r e e 而系统两电子动能为Ek 2 2 1 2 1 2 1 vmvm ee 系统能量为E Ep Ek mev12 2mk2e4 h2 评分 解答 式正确得2分 解答 式正确得3分 正确分析系统势能得2分 解答动能 正确得3分 正确列式 得出总能量表达式得3分 23 14分 显像管的工作原理是阴极K发射的电子束经高压加速电场 电压U 加速后垂直 正对圆心进入磁感应强度为B 半径为r的圆形匀强偏转磁场 如图11所示 偏转后轰击荧 光屏P 荧光粉受激而发光 在极短时间内完成一幅扫 描 若去离子水质不纯 所生产的阴极材料中会有少量S O SO打在屏上出现暗斑 称为离子斑 如发生上 2 4 2 4 述情况 试分析说明暗斑集中在荧光屏中央的原因 电 子质量为9 1 10 31 kg 硫酸根离子 SO 质量为1 6 10 25 kg 2 4 23 电子或硫酸根离子在加速电场中 qU 2 2 1 mv 设粒子在偏转磁场中偏转时 轨道半径为R 有 qvB m 则R R v2 q mU BqB mv21 设粒子在偏转磁场中速度偏角为 有 tan mU q Br R r 22 故tan 2 m q 由于硫酸根离子荷质比远小于电子的荷质比 高速硫酸根离子经过磁场几乎不发生偏 转 而集中打在荧光屏中央 形成暗斑 评分 正确运用动能定理处理粒子在加速电场中的运动得3分 求解粒子在偏转磁场中 的轨道半径得3分 正确抓住切入点 求解tan得3分 明确tan与的关系得2分 最 2 2 m q 后将tan 应用于电子和硫酸根离子 得出正确结论得2分 2 m q 24 14分 如图12是用高电阻放电法测电容的实验电路图 其原理是测出电容器在充电 电压为U时所带的电荷量Q 从而求出其电容C 该实验的操作步骤如下 按电路图接好实 验电路 接通开关S 调节电阻箱R的阻值 使微安表的指针接近满刻度 记下这时的电压 表读数U0 6 2 V和微安表读数I0 490 A 断开电键S并同时开始计时 每隔5 s或10 s读一次微安表的读数i 将读数记录在预先设计的表格中 根据表格中的12组数据 以t为 横坐标 i为纵坐标 在坐标纸上描点 图中用 表示 则 图12 1 根据图示中的描点作出图线 2 试分析图示中i t图线下所围的 面积 所表示的物理意义 3 根据以上实验结果和图线 估算当电容器两端电压为U0所带的电量Q0 并计算电容 器的电容 24 14分 1 根据描点绘出圆滑的曲线如图所示 注 a 绘出折线不得分 b 绘出的曲线应与横轴相切 否则酌情扣分 2 图中i t图线下所围的 面积 表示断开电键后通过电阻R的电量 即电容器两端电压为U0时所带 电量为Q 3 根据绘出图线 估算 面积 格数约32 33格 此范围内均得分 下同 因此 电容器电容为U0时 带电量 Q0 约为8 00 10 3 C 8 25 10 3 C 由C 得 电容器电容 C 约为 1 30 10 3 F 1 33 10 3 F U Q 评分 1 绘图正确得4分 2 面积 意义分析正确得5分 3 电容计算正确得5分 25 12分 据有关资料介绍 受控核聚变装置中有极高的温度 因而 带电粒子将没有通常意义上的 容器 可装 而是由磁场约束带电粒子 运动使之束缚在某个区域内 现按下面的简化条件来讨论这个问题 如图 11所示是一个截面为内径R 0 6 m 外径R2 1 2 m的环状区域 区域内有垂直于截面向里的匀强磁场 已知氦核的荷质比 4 8 107 C kg 磁场的磁感应强度B 0 4 T 不计带电粒子重力 m q 1 实践证明 氦核在磁场区域内沿垂直于磁场方向运动速度v的大小与它在磁场中运 动的轨道半径r有关 试导出v与r的关系式 2 若氦核在平行于截面从A点沿各个方向射入磁场都不能穿出磁场的外边界 求氦核 的最大速度 解 1 设氦核质量为m 电量为q 以速度v在磁感应强度为B的匀强磁场中做半径为r的 匀速圆周运动 Bqv m 3分 所以v 2分 r v2 m qBr 2 当氦核以vm的速度沿与内圆相切方向射入磁场且轨道与外圆相切时 则以vm速度沿 各方向射入磁场均不能穿过磁场 1分 即r 0 3 m 2分 2 12 RR 由Bqv 知r 2分 r mv2 qB mv 所以vm 5 76 106 m s 2分 m Bqr1 32 16分 如图所示为示波管的原理图 电子枪中炽热的金属丝可以发射电子 初速度 图11 很小 可视为零 电子枪的加速电压为U0 紧挨着是偏转电极YY 和XX 设偏转电极的 极板长均为 板间距离均为d 偏转电极XX 的右端到荧光屏的距离为 电子电量为 1 l 2 l e 质量为m 不计偏转电极YY 和XX 二者之间的间距 在YY XX 偏转电极上不加 电压时 电子恰能打在荧光屏上坐标的原点 求 1 若只在YY 偏转电极上加电压 则电子到达荧光屏上的速 1 UU YY 0 1 U 度多大 2 在第 1 问中 若再在XX 偏转电板上加上 0UUU 22 XX 试在荧光屏上标 出亮点的大致位置 并求出该点在荧光屏上坐标系中的坐标值 32 解 1 经加速电压后电子的速度为0 v 则有 2 00 mv 2 1 ev 1 电子经过YY 偏转电极的时间为1 t 侧向分速度为1 v 则有 0 1 1 v L t 2 1 1 1 t md ev v 3 电子打到荧光屏上的速度等于离开 1 YY偏转电极时的速度 由 1 2 3 可得 0 2 2 2 2 102 1 2 0 vmd2 Lev m ev2 vvv 4 2 电子在YY 偏转电极中的侧向位移为 2 1 1 1 t md ev 2 1 y 5 离开YY 偏转电极后的运动时间为1 V 侧向位移为2 y 则有 0 21 2 v ll t 6 212 tvy 7 电子在y方向的位移为 l 2 l 3 dU4 lU yyy 21 0 11 21 8 同理 电子在XX 偏转电极中的侧向位移为 2 1 2 1 t md eU 2 1 x 9 离开XX 后运动时间为3 t 侧向位移为2 x 则有 0 2 3 v l t 10 31 2 2 tt md eU x 11 电子在x方向的位移为 l 2 l dU4 lU xxx 21 0 12 21 12 光点在荧光屏上的坐标 l 2 l 3 dU4 lU l 2 l dU4 lU 21 0 11 21 0 12 33 如图1所不 A B为水平放置的平行金属板 板间距离为d d远小于板的长和宽 在两板之间有一带 负电的质点P 已知若在A B间加电压U0 则质点P可以静止平衡 现在A B间加上如图2所示的随时间t变 化的电压U 在t 0时质点P位于A B间的中点处且初速为0 已知质点P能在A B之间以最大的幅度上下运 动而不与两板相碰 求图2中U改变的各时刻t1 t2 t3及tn的表达式 质点开始从中点上升到最高点 及 以后每次从最高点到最低点或从最低点到最高点的过程中 电压只改变一次 设质点P的质量为m 电量大小为q 根据题意 当A B间的电压为U0时 有 当两板间的电压为2U0时 P的加速度向上 其大小为a 解得a g 当两板间的电压为0时 P自由下降 加速度为g 方向向下 在t 0时 两板间的电压为2U0 P自A B间的中点向上作初速为0的匀加速运动 加速度为g 经过时间 1 P的速度变为v1 此时使电压变为0 让P在重力作用下向上作匀减速运动 再经过 1 P正好达到A板 且速度变为0 故有 v1 g 1 0 v1 g 1 d g 12 v1 1 g 12 由以上各式得 1 1 因为t1 1 得 在重力作用下 P由A板处向下做匀加速运动 经过时间 2 P的速度变为v2 方向向下 此时加上电压使 P向下作匀减速运动 再经过 2 P正好达到B板且速度变为0 故有 v2 g 2 0 v2 g 2 d g 22 v2 2 g 22 由以上各式得 2 2 因为t2 t1 1 2 得t2 1 在电场力和重力的合力作用下 P又由B板向上作匀加速运动 经过时间 3 速度变为v3 此时使电压变 为0 让P在重力作用下向上作匀减速运动 经过 3 P正好达到A板且速度变为0 故有 v3 g 3 0 v3 g 3 d g 32 v3 3 g 32 由上得 3 3 因为t3 t2 2 3 得t3 3 根据上面分析 因重力作用 P由A板向下做匀加速运动 经过 2 再加上电压 经过 2 P到达B且速 度为0 因t4 t3 3 2 得t4 5 同样分析可得tn 2n 3 n 2 1988 N个长度逐个增大的金属圆筒和一个靶 它们沿轴线排列成一串 如图所示 图中只画出了六 个圆筒 作为示意 各筒和靶相间地连接到频率为 最大电压值为U的正弦交流电源的两 端 整个装置放在高真空容器中 圆筒的两底面中心开有小孔 现有一电量为q 质量为m 的正离子沿轴线射入圆筒 并将在圆筒间及圆筒与靶间的缝隙处受到电场力的作用而加速 设圆筒内部没有电场 缝隙的宽度很小 离子穿过缝隙的时间可以不计 已知离子进入第 一个圆筒左端的速度为v1 且此时第一 二两个圆筒间的电势差V1 V2 U 为使打到靶上的离子获得最大能量 各个圆筒的长度应满足什么条件 并求出在这种情况 下打到靶上的离子的能量 为使正离子获得最大能量 要求离子每次穿越缝隙时 前一个圆筒的电势比后一个圆筒的电 势高U 这就要求离子穿过每个圆筒的时间都恰好等于交流电的半个周期 由于圆筒内无电 场 离子在筒内做匀速运动 设vn为离子在第n个圆筒内的速度 则有 将 3 代入 2 得第n个圆筒的长度应满足的条件为 n 1 2 3 N 打到靶上的离子的能量为 评分标准 本题共9分 列出 1 式给2分 列出 2 式给3分 得出 4 式再给2分 得出 5 式给2 分 1991 在光滑的水平轨道上有两个半径都是r的小球A和B 质量分别为m和2m 当两球心间的距离大 于l l比2r大得多 时 两球之间无相互作用力 当两球心间的距离等于或小于l时 两球间存 在相互作用的恒定斥力F 设A球从远离B球处以速度v0沿两球连心线向原来静止的B球运动 如图所示 欲使两球不发生接触 v0必须满足什么条件 解一 A球向B球接近至A B间的距离小于l之后 A球的速度逐步减小 B球从静止开始加速运 动 两球间的距离逐步减小 当A B的速度相等时 两球间的距离最小 若此距离大于2r 则两 球就不会接触 所以不接触的条件是 v1 v2 l s2 s1 2r 其中v1 v2为当两球间距离最小时A B两球的速度 s1 s2为两球间距离从l变至最小 的过程中 A B两球通过的路程 由牛顿定律得A球在减速运动而B球作加速运动的过程中 A B两球的加速度大小为 设v0为A球的初速度 则由匀加速运动公式得 联立解得 解二 A球向B球接近至A B间的距离小于l之后 A球的速度逐步减小 B球从静止开始 加速运动 两球间的距离逐步减小 当A B的速度相等时 两球间的距离最小 若此距 离大于2r 则两球就不会接触 所以不接触的条件是 v1 v2 l s2 s1 2r 其中v1 v2为当两球间距离最小时A B两球的速度 s1 s2为两球间距离从l变至最小 的过程中 A B两球通过的路程 设v0为A球的初速度 则由动量守恒定律得mv0 mv1 2mv2 由动能定理得 联立解得 评分标准 全题共8分 得出 式给1分 得出 式给2分 若 式中 写成 的也给这2分 在写出 两式的条件下 能写出 式 每式各得1分 如只写出 式 不 给这3分 得出结果 再给2分 若 式中 0一侧的每个沙袋质量为m 14千克 x0 Vn0 M n 1 m 0 代入数字 得 n M m 48 14 n M m 1 34 14 n应为整数 故n 3 即车上堆积3个沙袋后车就反向滑行 2 车自反向滑行直到接近x0 Vn 0 即M 3m nm 0 M 3m n 1 m 0 或 n M 3m m 9 n M 3m m 1 8 8 n 9 n 8时 车停止滑行 即在x 0一侧第8个沙袋扔到车上后车就停住 故车上最终共有大小沙袋3 8 11个 评分标准 全题12分 第 1 问4分 求得 式给2分 正确分析车反向滑行条件并求得反向时车 上沙袋数再给2分 若未求得 式 但求得第1个沙袋扔到车上后的车速 正确的也给2分 通 过逐次计算沙袋扔到车上后的车速 并求得车开始反向滑行时车上沙袋数 也再给2分 第 2 问8分 求得 式给3分 式给1分 式给2分 求得 式给1分 得到最后结果再给1 分 若未列出 两式 但能正确分析并得到左侧n 8的结论 也可给上述 式 对应的4分 1996 设在地面上方的真空室内存在匀强电场和匀强磁场 已知电场强度和磁感应强度的方向是 相同的 电场强度的大小E 4 0伏 米 磁感应强度的大小B 0 15特 今有一个带负电的 质点以v 20米 秒的速度在此区域内沿垂直场强方向做匀速直线运动 求此带电质点的电量与质量之比q m以及磁场的所有可能方向 角度 可用反三角函数表示 解 根据带电质点做匀速直线运动的条件 得知此带电质点所受的重 力 电场力和洛仑兹力的合力必定为零 由此推知此三个力在同一竖 直平面内 如右图所示 质点的速度垂直纸面向外 解法一 由合力为零的条件 可得 求得带电质点的电量与质量之比 代入数据得 因质点带负电 电场方向与电场力方向相反 因而磁场方向也与电场力方向相反 设磁场 方向与重力方向之间夹角为 则有qEsin qvBcos 解得tg vB E 20 0 15 4 0 arctg0 75 即磁场是沿着与重力方向夹角 arctg0 75 且斜向下方的一切方向 解法二 因质点带负电 电场方向与电场力方向相反 因而磁砀方向也与电场力方向相反 设磁场方向与重力方向间夹角为 由合力为零的条件 可得qEsin qvBcos qEcos qvBsin mg 解得 代入数据得 q m 1 96库 千克 tg vB E 20 0 15 4 0 arctg0 75 即磁场是沿着与重力方向成夹角 arctg0 75 且斜向下方的一切方向 1997 如图1所示 真空室中电极K发出的电子 初速不计 经过U0 1000伏的加速电场后 由小 孔S沿两水平金属板A B间的中心线射入 A B板长l 0 20米 相距d 0 020米 加在A B两板间电压u随时间t变化的u t图线如图2所示 设A B间的电场可看作是均匀的 且两板外无电场 在每个电子通过电 场区域的极短时间内 电场可视作恒定的 两板右侧放一记录圆筒 筒在左侧边缘与极板 右端距离b 0 15米 筒绕其竖直 轴匀速转动 周期T 0 20秒 筒 的周长s 0 20米 筒能接收到通 过A B板的全部电子 1 以t 0时 见图2 此时u 0 电子打到圆筒记录纸上的点作 为xy坐标系的原点 并取y轴竖直 向上 试计算电子打到记录纸上的最高点 的y坐标和x坐标 不计重力作用 2 在给出的坐标纸 图3 上定量地画出电子打到记录纸上的点形成的图线 解 1 计算电子打到记录纸上的最高点的坐标设v0为电子沿A B板的中心线射入电场时 的初速度 则 电子在中心线方向的运动为匀速运动 设电子穿过A B板的时间为t0 则 l v0t0 电子在垂直A B板方向的运动为匀加速直线运动 对于恰能穿过A B板的电子 在它通过 时加在两板间的电压uc应满足 联立 式解得u0 2d2 12 U0 20伏 此电子从A B板射出时沿y方向的分速度为vy eu0 md t0 此后 此电子作匀速直线运动 它打在记录纸上的点最高 设纵坐标为y 由图 1 可得 y d 2 b vy v0 由以上各式解得y bd l d 2 2 5厘米 从题给的u t图线可知 加于两板电压u的周期T0 0 10秒 u的最大值um 100伏 因为uc um 在一个周 期T0内 只有开始的一段时间间隔 t内有电子通过A B板 t uc um T0 因为电子打在记录纸上的最高点不止一个 根据题中关于坐标原点与起始记录时刻的规定 第一个最高点的x坐标为x1 t T s 2厘米 第二个最高点的x坐标为x2 t T0 s 12厘米 第三个最高点的x坐标为x3 t 2T T s 22厘米 由于记录筒的周长为20厘米 所以第三个最高点已与第一个最高点重合 即电子打到记录 纸上的最高点只有两个 它们的x坐标分别由 和 表示 2 电子打到记录纸上所形成的图线 如图 2 所示 评分标准 本题12分 第 1 问10分 式各1分 式2分 式各1分 1998 一段凹槽A倒扣在水平长木板C上 槽内有一小物块B 它到 槽两内侧的距离均为l 2 如图所示 木板位于光滑水平的 桌面上 槽与木板间的摩擦不计 小物块与木板间的摩擦系 数为 A B C三者质量相等 原来都静止 现使槽A以大 小为v0的初速向右运动 已知v0 2 gL 当A和B发生碰撞时 两者速度互换 求 1 从A B发生第一次碰撞到第二次碰撞的时间内 木板C运动的路程 2 在A B刚要发生第四次碰撞时 A B C三者速度的大小 解 1 A与B刚发生第一次碰撞后 A停下不动 B以初速v0向右运动 由于摩擦 B向右作 匀减速运动 而C向右作匀加速运动 两者速率逐渐接近 设B C达到相同速度v1时B移动的路程为s1 设A B C质量皆为m 由动量守恒定律 得mv0 2mv1 由功能关系 得 mgs1 2mv02 2 mv12 2 由 得 v1 v0 2 代入 式 得 s1 3v02 8 g 根据条件 v0 得s1 3l 4 可见 在B C达到相同速度v1时 B尚未与A发生第二次碰撞 B与C一起将以v1向右匀速运 动一段距离 l s1 后才与A发生第二次碰撞 设C的速度从零变到v1的过程中 C的路程为s2 由功能关系 得 mgs2 mv12 2 解得 s2 v02 8 g 因此在第一次到第二次碰撞间C的路程为s s2 l s1 l v02 4 g 2 由上面讨论可知 在刚要发生第二次碰撞时 A静止 B C的速度均为v1 刚碰撞后 B 静止 A C的速度均为v1 由于摩擦 B将加速 C将减速 直至达到相同速度v2 由动量 守恒定律 得mv1 2mv2 解得 v2 v1 2 v0 4 因A的速度v1大于B的速度v2 故第三次碰撞发生在A的左壁 刚碰撞后 A的速度变为v2 B 的速度变为v1 C的速度仍为v2 由于摩擦 B减速 C加速 直至达到相同速度v3 由动量 守恒定律 得mv1 mv2 2mv3 解得v3 3v0 8 故刚要发生第四次碰撞时 A B C的速度分别为vA v2 v0 4 vB vC v3 3v0 8 1999 图中虚线MN是一垂直纸面的平面与纸面的交线 在平面右侧的半空 间存在一磁感强度为B的匀强磁场 方向垂直纸面向外是MN上的一 点 从O 点可以向磁场区域发射电量为 q 质量为m 速率为的粒于 粒于射入磁场时的速度可在纸面内各个方向已知先后射人的两个粒子恰 好在磁场中给定的P点相遇 P到0的距离为L不计重力及粒子间的相互作用 1 求所考察的 粒子在磁场中的轨道半径 2 求这两个粒子从O点射人磁场的时间间隔 解答 1 设粒子在磁场中作圆周运动的轨道半径为R 由牛顿第二定律 有 qvB mv2 R 得R mv qB 2 如图所示 以OP为弦可画两个半径相同的圆 分别表示在P点相遇的两个粒子的轨道 圆心和直径分别为 O1 O2和OO1Q1 OO2Q2 在0处两个圆的切线分别表示两个粒子的射入方向 用 表示它们之间 的夹角 由几何关系可知 PO1Q1 PO2Q2 从0点射入到相遇 粒子1的路程为半个圆周加弧长Q1P Q1P P 粒子2的路程为半个圆周减弧长PQ2 2 PQ2 R 粒子1运动的时间t1 1 2T R v 其中T为圆周运动的周期 粒子2运动的时间为t2 1 2 T R v 两粒子射入的时间问隔 t t1 t2 2R V 因 Rcos 2 1 2L得 2arccos L 2R 由 三式得 t 4marccos lqB 2mv qB 2000 在原子核物理中 研究核子与核关联的最有效途径是 双电荷交换反应 这类反应的前 半部分过程和下述力学模型类似 两个小球A和B用轻质弹簧相连 在 光滑的水平直轨道上处于静止状态 在它们左边有一垂直于轨道的固 定挡板P 右边有一小球C沿轨道以速度射向B球 如图所示 C与B 发生碰撞并立即结成一个整体D 在它们继续向左运动的过程中 当弹簧长度变到最短时 长度突然被锁定 不再改变 然后 A球与挡板P发生碰撞 碰后A D都静止不动 A与P接 触而不粘连 过一段时间 突然解除锁定 锁定及解除定均无机械能损失 已知A B C 三球的质量均为m 1 求弹簧长度刚被锁定后A球的速度 2 求在A球离开挡板P之后的运动过程中 弹簧的最大弹性势能 解答 1 设C球与B球粘结成D时 D的速度为 由动量守恒 有 当弹簧压至最短时 D与A的速度相等 设此速度为 由动量守恒 有 由 两式得 A的速度 2 设弹簧长度被锁定后 贮存在弹簧中的势能为 由能量守恒 有 撞击P后 A与D的动能都为零 解除锁定后 当弹簧刚恢复到自然长度时 势能全部转变成 D的动能 设D的速度为 则有 当弹簧伸长 A球离开挡板P 并获得速度 当A D的速度相等时 弹簧伸至最长 设此时 的速度为 由动量守恒 有 当弹簧伸到最长时 其势能最大 设此势能为 由能量守恒 有 解以上各式得 2000上海12分 风洞实验室中可以产生水平方向的 大小可调节的风力 现将一套有小 球的细直杆放入风洞实验室 小球孔径略大于细杆直径 1 当杆在水平方向上固定时 调节风力的大小 使小球 在杆上作匀速运动 这时小班干部所受的风力为小球所受 重力的0 5倍 求小球与杆间的滑动摩擦因数 2 保持小球所受风力不变 使杆与水平方向间夹角为37 并固定 则小球从静止出发在 细杆上滑下距离S所需时间为多少 sin37 0 6 cos37 0 8 1 设小球所受的风力为F 小球质量为m mgF 1 5 0 5 0 mgmgmgF 2 2 设杆对小球的支持力为N 摩擦力为f 沿杆方向mafmgninF cos 3 垂直于杆方向0cossin ngFN 4 Nf 5 可解得g gm F g m fngF a 4 3 sin sincos 2 2 6 2 2 1 atS 7 g S g S t 3 8 4 3 2 8 评分标准 1 3分 正确得出式 得3分 仅写出式 得1分 2 1 2 9分 正确得出式 得6分 仅写出 式 各得2分 仅写出式 得1分 正确 6 3 4 5 得出式 得3分 仅写出式 得2分 g用数值代入的不扣分 8 7 24 13分 阅读如下资料并回答问题 自然界中的物体由于具有一定的温度 会不断向外辐射电磁波 这种辐射因与温度有关 称为势辐射 势辐射具有如下特点 辐射的能量中包含各种波长的电磁波 物体温度 1 2 越高 单位时间从物体表面单位面积上辐射的能量越大 在辐射的总能量中 各种波长 3 所占的百分比不同 处于一定温度的物体在向外辐射电磁能量的同时 也要吸收由其他物体辐射的电磁能量 如果它处在平衡状态 则能量保持不变 若不考虑物体表面性质对辐射与吸收的影响 我 们定义一种理想的物体 它能100 地吸收入射到其表面的电磁辐射 这样的物体称为黑体 单位时间内从黑体表面单位央积辐射的电磁波的总能量与黑体绝对温度的四次方成正比 即 其中常量瓦 米2 开4 4 0 T P 3 1067 5 在下面的问题中 把研究对象都简单地看作黑体 有关数据及数学公式 太阳半径千米 太阳表面温度开 火星半696000 s R5770 T 径千米 球面积 其中R为球半径 3395 r 2 4 RS 1 太阳热辐射能量的绝大多数集中在波长为2 10 9米 1 10 4米范围内 求相应的频 率范围 2 每小量从太阳表面辐射的总能量为多少 3 火星受到来自太阳的辐射可认为垂直射可认为垂直身到面积为 为火星半径 2 r r 的圆盘上 已知太阳到火星的距离约为太阳半径的400倍 忽略其它天体及宇宙空间的辐射 试估算火星的平均温度 解 1 赫 c 1 1798 1 105 1102 1000 3 2 赫 1248 1 103101 1000 3 3 辐射的频率范围为3 1012赫 1 5 1017赫 2 每小量从太阳表面辐射的总能量为代入数所得W 1 38 1010焦 tTRW 4 2 s 4 4 3 设火星表面温度为T 太阳到火星距离为 火星单位时间内吸收来自太阳的辐射 5 d 能量为 2 2 4 2 4 4 d r TRP s 6 s Rd400 224 400 rTP 7 火星单位时间内向外辐射电磁波能量为 42 4TrP t 8 火星处在平衡状态即 tt PP 9 42224 4 400 TrrT 10 由式解得火星平均温度 开 10 204800 TT 11 评分标准 全题13分 1 正确得了 式 各得1分 2 正确得出式 得5分 仅写出式 得3分 1 2 3 5 4 3 正确得出式 得4分 仅写出式或式 得1分 仅写出式 得1分 正确得 10 6 7 8 出式 得1分 11 2001年江苏 安徽 福建卷 31 28分 太阳现正处于主序星演化阶段 它主要是由电子和 等原子核组成H 1 1 He 4 2 维持太阳辐射的是它内部的核聚变反应 核反应方程是2e 4 释放的核能 这H 1 1 He 4 2 些核能最后转化为辐射能 根据目前关于恒星演化的理论 若由于聚变反应而使太阳中的 核数目从现有数减少10 太阳将离开主序垦阶段而转入红巨星的演化阶段 为了简H 1 1 化 假定目前太阳全部由电子和核组成 H 1 1 1 为了研究太阳演化进程 需知道目前太阳的质量M 已知地球半径R 6 4 106 m 地球质量m 6 0 1024 kg 日地中心的距离r 1 5 1011 m 地球表面处的重力加速度g 10 m s2 1年约为3 2 107秒 试估算目前太阳的质量M 2 已知质子质量mp 1 6726 10 27 kg 质量m 6 6458 10 27 He 4 2 kg 电子质量me 0 9 10 30 kg 光速c 3 108 m s 求每发生一次题中所述的核聚变反应所释放的核能 3 又知地球上与太阳光垂直的每平方米截面上 每秒通过的太阳辐射能w 1 35 103 W m2 试估算太阳继续保持在主序星阶段还有多少年的寿命 估算结果只要求一位有效数字 参考解答 1 估算太阳的质量M 设T为地球绕日心运动的周期 则由万有引力定律和牛顿定律可知 地球表面处的重力加速度 2 R m Gg 由 式联立解得 以题给数值代入 得M 2 1030 kg 2 根据质量亏损和质能公式 该核反应每发生一次释放的核能为 E 4mp 2me m c 2 代入数值 解得 E 4 2 10 12 J 3 根据题给假定 在太阳继续保持在主序星阶段的时间内 发生题中所述的核聚变反应 的次数为 10 p m M N 4 因此 太阳总共辐射出的能量为E N E 设太阳辐射是各向同性的 则每秒内太阳向外放出的辐射能为 4 r2w 所以太阳继续保持在主序星的时间为 E t 由以上各式解得 以题给数据代入 并以年为单位 可得t 1 1010 年 1 百亿年 评分标准 本题28分 其中第 1 问14分 第 2 问7分 第 3 问7分 第 1 问中 两式各3分 式4分 得出 式4分 第 2 问中 式4分 式3分 第 3 问中 两式各2分 式2分 式1分 2001年北京卷 如图所示 A B是静止在水平地面上完全相同的两块长木板 A的左端和B的右端相接触 两板的质量皆为 长度皆为 C是一质量为的小物块kgM0 2 ml0 1 kgm0 1 现给它一初速度 使它从B板的左端开始向右滑动 已知地面是光滑smv 0 2 0 的 而C与A B之间的动摩擦因数皆为 求最后A B C各以多大的速度做匀10 0 速运动 取重力加速度 2 10smg 22 参考解答 先假设小物块C在木板B上移动距离后 停在B上 这时A B C三者的速度相等 设为V x 由动量守恒得 VMmmv 2 0 在此过程中 木板B的位移为 小木块C的位移为 由功能关系得sxs 2 0 2 2 1 2 1 mvmVxsmg 2 2 2 1 MVmgs 相加得 2 0 2 2 1 2 2 1 mvVMmmgx 解 两式得 gmM Mv x 2 2 0 代入数值得 mx6 1 板的长度 在 这说明小物块C不会停在B板上 而要滑到A板上 设C刚滑到A板上的Bx比l 速度为 此时A B板的速度为 则由动量守恒得 1 v 1 V 110 2MVmvmv 由功能关系得 mglMVmvmv 2 1 2 1 2 0 2 2 1 2 1 2 1 以题给数据代入解得 20 248 1 V 5 242 5 248 2 1 v 由于必是正数 故合理的解是 1 vsmV 155 0 20 248 1 smv 38 1 5 242 1 当滑到A之后 B即以做匀速运动 而C是以的初速在A上向右smV 155 0 1 smv 38 1 1 运动 设在A上移动了距离后停止在A上 此时C和A的速度为 由动量守恒得y 2 V 211 VMmmvMV 解得 smV 563 0 2 由功能关系得mgyVMmMVmv 2 2 2 1 2 1 2 1 2 1 2 1 解得my50 0 比A板的长度小 故小物块C确实是停在A板上 最后A B C的速度分别为y smVVA 563 0 2 smVVB 155 0 1 smVV AC 563 0 评分标准 本题14分 正确论证了C不能停在B板上而是停在A板上 占8分 求出A B C三者的最后速度 占6分 2001年全国卷 广东卷 一个圆柱形的竖直的井里存有一定量的水 井的侧面和底部是密闭的 在井中固定地插着 一根两端开口的薄壁圆管 管和井共轴 管下端未触及井底 在圆管内有一不漏气的活塞 它可沿圆管上下滑动 开始时 管内外水面相齐 且活塞 恰好接触水面 如图所示 现用卷扬机通过绳子对活塞施加一个向上的力F 使活塞缓慢向上移动 已知管筒半径 r 0 100m 井的半径R 2r 水的密度 1 00 103kg m 3 大气压 0 1 00 105Pa 求活塞质量 不计摩擦 重力加速度g 10m s2 参考解答 从开始提升到活塞升至内外水面高度差为的过程中 活塞始终与管内液体接m Pg P h10 0 0 触 再提升活塞时 活塞和水面之间将出现真空 另行讨论 设活塞上升距离为h1 管外液面下降距离为h2 h0 h1 h2 因液体体积不变 有 1 22 2 12 3 1 h rR r hh 得 mmhh5 710 4 3 4 3 01 题给H 9m h1 由此可知确实有活塞下面是真空的一段过程 活塞移动距离从零到h1的过程中 对于水和活塞这个整体 其机械能的增量应等于除重力 外其他力所做的功 因为始终无动能 所以机械能的增量也就等于重力势能增量 即 2 0 1 2 h ghrE 其他力有管内 外的大气压力和拉力F 因为液体不可压缩 所以管内 外大气压力做的总 功P0 R2 r2 h2 P0 r2h1 0 故外力做功就只是拉力F做的功 由功能关系知W1 E 即 J g P rhgrW 4 2 022 0 2 1 1018 1 8 3 8 3 活塞移动距离从h1到H的过程中 液面不变 F是恒力F r2P0 做功W2 F H h1 r2P0 H h1 4 71 103 J 所求拉力F做的总功为W1 W2 1 65 104 J 评分标准 本题13分 式4分 式3分 式5分 式1分 2001年上海卷 如图所示 光滑斜面的底端a与一块质量均匀 水平放置的平极光滑相接 平板长为2L L 1m 其中心C固定在高为R的竖直支架上 R 1m 支架的下端与垂直于纸面的固定转轴O 连接 因此平板可绕转轴O沿顺时针方向翻转 问 l 在外面上离平板高度为h0处放置一滑块A 使 其由静止滑下 滑块与平板间的动摩擦因数 0 2 为使平板不翻转 h0最大为多少 2 如果斜面上的滑块离平板的高度为h1 0 45 m 并在h1处先后由静止释放两块质量相同的滑块A B 时间间隔为 t 0 2s 则B滑块滑 上平板后多少时间 平板恰好翻转 重力加速度g取10 m s2 解 1 设A滑到a处的速度为v0 f uN N mg f ma a ug 滑到板上离a点的最大距离为v02 2ugs0 s0 2gh0 2ug h0 u A在板上不翻转应满足条件 摩擦力矩小于正压力力矩 即M摩擦 M压力 umgR mg L s0 h0 u L Ur 0 2 1 0 2 0 16 m 2 当h 0 45m vA 3m s vA vB 3m s 设B在平板上运动直到平板翻转的时刻为t 取 t 0 2s sA vA t t ug t t 2 2 sB vBt ugt2 2 两物体在平板上恰好保持平板不翻转的条件是 2umgR mg L sA mg L sB 由 式等于 式 得t 0 2s 评分标准 全题15分 第 1 小题7分 第 2 小题8分 其中 1 得出 各得1分 判断M摩擦 M压力正确得2分 式各得1分 2 得出 式得1分 式得1分 写出 式得3分 最后结果正确得3分 2001福建福州一中模拟13分 俄罗斯 和平号 空间站在人类航天史上写下了辉煌的篇章 因不能保障其继续运行 3月20号左右将坠入太平洋 设空间站的总质量为 在离地面 高度为 的轨道上绕地球做匀速圆周运动 坠落时地面指挥系统使空间站在极短时间内向 前喷出部分高速气体 使其速度瞬间变小 在万有引力作用下下坠 设喷出气体的质量为 m 喷出速度为空间站原来速度的37倍 坠入过程中外力对空间站做功为W 求 100 1 1 空间站做圆周运动时的线速度 2 空间站落到太平洋表面时的速度 设地球表面的重力加速度为 地球半径为R 参考解答 1 设空间站做圆周运动的速度为 地球质量为M 由牛顿第二定律得 2 1 2 hR v m Rh Mm G 地表重力加速度为 则 g R GM 2 由 式得 2 1 Rh gR v 2 喷出气体后空间站速度变为 由动量守恒定律得 121 100 37 100 mvv m mmv 设空间站落到太平洋表面时速度为 由动能定理得 Wv m v m 2 2 2 3 100 99 2 1 100 99 2 1 由 式得 m W hR gR v 99 200 121 49 2 3 2002春季卷 磁铁在电器中有广泛的应用 如发电机 如图所示 已知一台单和发电机转子导线框共有N 匝 线框长为l1 宽为l2 转子的转动角速度为 磁极间的磁感强度为B 试导出发电机 的瞬时电动热E的表达式 现在知道有一种强水磁材料钕铁硼 用它制成发电机的磁极时 磁感强度可增大到原来的K 倍 如果保持发电机结构和尺寸 转子转动角速度 需产生的电动热都不变 那么这时转 子上的导线框需要多少匝 解析 取轴Ox垂直于磁感强度 线框转角为 如图所示 线框长边 垂直于纸面 点A B表示线框长边导线与纸面的交点 O点表示转轴与纸 面的交点 线框长边的线速度为 2 2 l v 一根长边导线产生的电动势为 一匝导线框所产生的 2 2 l sinB 1 l 感应电动势为 sin 211 BllE N匝线框产生的电动势应为 tBlNlNEEN sin 211 磁极换成钕铁硼永磁体时 设匝数为N 则有 tKBllNEN sin 21 由可得 NN EE K N N 如果考生取磁场线方向为轴并得出正确结果同样给分 2002年全国卷 30 27分 有三根长度皆为l 1 00 m的不可伸长的绝缘轻线 其中两根的一端固定在天花板上的 O点 另一端分别挂有质量皆为m 1 00 10 2 kg的带电小球A和B 它们的电量分别为一q和 q q 1 00 10 7C A B之间用第三根线 连接起来 空间中存在大小为E 1 00 106N C的匀强电场 场强方向沿水平向右 平衡时 A B球的位置如图所示 现将O B之间的线烧断 由于有空气阻力 A B球最后会达到新 的平衡位置 求最后两球的机械能与电势能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中实验仪器课件
- 员工劳动争议调解办法
- 高一课文《劝学》课件
- 高一政治备课经验课件
- 离婚协议必知:赡养费支付方式及调整标准解读
- 高端服务业人才派遣与劳动权益双重保障合同
- 住宅小区物业合同到期延期及绿化养护协议
- 知识产权密集型厂房租赁及研发成果转化合同
- 广告效果归因分析代理合同
- 骨髓细胞进修汇报课件
- 部编版六年级语文上册重点难点解析
- 电力监理劳务合同范本
- 2025河北工勤人员技师考试消毒员训练题及答案
- 重庆市南开中学高2026届高三第一次质量检测+化学答案
- 2025年供水管网改造工程可行性研究报告
- 肖婷民法总则教学课件
- 教育培训课程开发与实施指南模板
- 2025保密协议范本:物流行业货物信息保密
- 砂石料物资供应服务保障方案
- 2025卫星互联网承载网技术白皮书-未来网络发展大会
- 顺丰转正考试题库及答案
评论
0/150
提交评论