导学案MicrosoftWord文档_第1页
导学案MicrosoftWord文档_第2页
导学案MicrosoftWord文档_第3页
导学案MicrosoftWord文档_第4页
导学案MicrosoftWord文档_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 1 1 命题及其关系 一 命题及其关系 一 学习目标学习目标 了解命题的概念 会判断一个命题的真假 并会将一个命题改写成 若 p 则q 的形式 学习重点学习重点 命题的改写 学习难点学习难点 命题概念的理解 学习过程学习过程 一一 自主学习自主学习 知识链接知识链接 阅读下列语句 你能判断它们的真假吗 1 矩形的对角线相等 2 3 12 3 3 12 吗 4 8 是 24 的约数 5 两条直线相交 有且只有一个交点 6 他是个高个子 新课探究新课探究 1 思考 请判断下列语句的真假 能否看出这些语句的表达形式有什么特点 1 若直线 a b 则直线 a 和直线 b 无公共点 2 2 4 7 3 垂直于同一条直线的两个平面平行 4 若 x2 1 则 x 1 5 两个全等的三角形面积相等 6 3 能被 2 整除 2 教材概念 1 命题 2 真命题 3 假命题 4 在数学中 若 p 则 q 是命题的常见形式 其中 p 叫做命题的 q 叫做命题的 二二 互动展示互动展示 1 判断下列语句中哪些是命题 是真命题还是假命题 1 空集是任何集合的子集 2 若整数a是素数 则a是奇数 3 对数函数是增函数吗 4 若平面上两条直线不相交 则这两条直线平行 5 2 2 2 6 x 15 2 指出下列命题的条件 p 和结论 q 会区分条件 p 和结论 q 1 若整数 a 能被 2 整除 则 a 是偶数 2 若四边形是菱形 则它的对角线互相垂直且平分 3 将下列命题改写成 若 p 则q 的形式 并判断真假 1 两条直线相交有且只有一个交点 2 对顶角相等 3 全等的两个三角形面积也相等 4 垂直于同一直线的两条直线平行 5 负数的立方是负数 三三 总结拓展总结拓展 知识小结 知识小结 四四 检测反馈检测反馈 1 下列语句或式子中命题的个数是 1 语文和数学 2 垂直于同一条直线的两条直线必平行吗 3 一个数不是合数就是素数 4 把门关上 5 023 x 6 043 2 xx A 1 B 2 C 3 D 5 2 下列语句是命题的是 A 你能帮我学好数学吗 B 地上有个月亮 C 四边形的对角线 D 整数集和自然数集 3 若 A B 是两个集合 则下列命题中的真命题是 A 如果 A B 那么 ABA B 如果 ABA 那么 BAcu C 如果 A B 那么 ABA D 如果 ABA 那么 A B 4 设 a b c 是任意的平面非零向量 且相互不共线 则 1 a b c c ba 2 baba 3 b c a c a b 不于 c 垂直 4 3a 2b 3a 2b 9 22 4ba 中中是真命题的是 A 1 2 B 2 3 C 3 4 D 2 4 5 下列语句中 是命题的个数是 x 2 5 Z R 0 N A 1 B 2 C 3 D 4 6 指出下列命题的条件 p 和结论 q 1 如果四面体为正四面体 则定点在底面上的射影为底面的中心 2 如果两条直线 a 和 b 都和直线 c 平行 则直线 a 平行直线 b 3 如果 a b c 成等差数列 则 2b a c 4 偶函数的图像关于 y 轴成轴对称图形 7 将下列命题改成 若 p 则 q 形式 并判断命题的真假 1 6 是 12 和 18 的公约数 2 当 a 1 时 方程 012 2 xax 有两个不等实根 3 已知 x 和 y 为非零自然数 当 y x 2 时 y 4 x 2 4 实数的平方是非负数 5 平行于同一直线的两条直线平行 五五 自我评价自我评价 你完成本节学案的情况为 A 很好 B 较好 C 一般 D 较差 六六 作业作业 1 将下列命题改成 若 p 则 q 形式 并判断命题的真假 1 ac bc a b 2 已知 x 和 y 为正整数 当 y x 1 时 y 3 x 2 3 当 m 4 1 01 2 xmx 无实根 4 当 abc 0 时 a 0 或 b 0 或 c 0 2 已知 p 01 2 mxmx 有两个不等的负根 q 方程 01 2 44 2 Rmxmx 无实根 求使 p 正确 q 且正确 的 m 的取值范围 1 1 2 四种命题及四种命题的相互关系四种命题及四种命题的相互关系 学习目标学习目标 理解四种命题的概念 掌握命题形式的表示 能写出一个简单的命题 原命题 的逆命题 否命题 逆否命题 学习重点学习重点 四种命题的概念 学习难点学习难点 由原命题写出另外三种命题 学习过程学习过程 一一 自主学习自主学习 知识链接知识链接 命题的概念 新课探究新课探究 思考思考 1 下列四个命题中 命题 1 与命题 2 3 4 的条件和结论之间分别有什么关系 若 f x 是正弦函数 则 f x 是周期函数 若 f x 是周期函数 则 f x 是正弦函数 若 f x 不是正弦函数 则 f x 不是周期函数 若 f x 不是周期函数 则 f x 不是正弦函数 2 教材概念 一般地 对于两个命题 如果一个命题的条件和结论分别是另一个命题的 那么我们把这 样的两个命题叫做互逆命题互逆命题 其中一个命题叫做 另一个命题叫做原命题的 一般地 对于两个命题 如果一个命题的条件和结论恰好是另一个命题的 那么我们把这样的两个命题叫做互否命题互否命题 其中一个命题叫做原命题原命题 另一个命题叫做原命题的 一般地 对于两个命题 如果一个命题的条件和结论恰好是另一个命题的 的那么我们把这样的两个命 题叫做互为逆否命题互为逆否命题 其中一个命题叫做原命题原命题 另一个命题叫做原命题的 小结 小结 1 交换原命题的条件和结论 所得的命题就是它的逆命题逆命题 2 同时否定原命题的条件和结论 所得的命题就是它的否命题否命题 3 交换原命题的条件和结论 并且同时否定 所得的命题就是它的逆否命题逆否命题 强调 原命题与逆命题 原命题与否命题 原命题与逆否命题是相对的 3 四种命题的形式 原命题 逆命题 否命题 逆否命题 4 四种命题的相互关系 探究 探究 四种命题真假性之间的关系 写出下列命题的逆命题 否命题 逆否命题并判断它们的真假 若一个三角形的两条边相等 则这个三角形的两个角相等 若一个整数的末位数字是 则这个整数能被 整除 若 x2 1 则 x 1 4 若整数 a 是素数 则是 a 奇数 结合以上练习完成下列表格 原 命 题逆 命 题否 命 题逆 否 命 题 真真 假真 假真 假假 结论一 原命题与它的逆否命题同真假 结论一 原命题与它的逆否命题同真假 结论二 两个命题为互逆命题或互否命题 它们的真假性没有关系结论二 两个命题为互逆命题或互否命题 它们的真假性没有关系 四种命题真假性之间的联系可以为我们进行推理论证带来方便 例如 由于原命题与其逆否命题有相同的真假性 当原命题与其逆否命题有相同的真假性 当 直接证明一个命题为真命题有困难时 可以通过证明其逆否命题为真命题来简介地证明原命题为真 直接证明一个命题为真命题有困难时 可以通过证明其逆否命题为真命题来简介地证明原命题为真 二二 互动展示互动展示 1 写出下列命题的逆命题 否命题 逆否命题 并判断它们的真假 1 同位角相等 两直线平行 2 正弦函数是周期函数 3 线段垂直平分线上的点与这条线段两个端点的距离相等 4 若a b 则a cbc 5 若 22 0 xy 则 x y 全为 0 6 全等三角形一定是相似三角形 2 一个命题与他们的逆命题 否命题 逆否命题这 4 个命题中 A 真命题与假命题的个数相同 B 真命题的个数一定是奇数 C 真命题的个数一定是偶数 D 真命题的个数可能是奇数 也可能是偶 3 有下列四个命题 若 0 xy 则 x y 互为相反数 的逆命题 全等三角形的面积相等 的否命题 若 1q 则 2 20 xxq 有实根 的逆否命题 不等边三角形的三个内角相等 逆命题 其中真命题为 A B C D 4 下列命题中正确的是 若 x2 y2 0 则 x y 不全为零 的否命题 等腰三角形都相似 的逆命题 若 m 0 则方程 x2 x m 0 有实根 的逆否命题 若 x 1 2 3 是有理数 则 x 是无理数 的逆否命题 A B C D 5 命题 若a b 都是偶数 则 ba 不是偶数 逆否命题是 6 证明 若 p2 q2 2 则 p q 2 三三 总结拓展总结拓展 知识小结 知识小结 四四 检测反馈检测反馈 1 若命题 p 的逆命题是 q 命题 p 的逆否命题是 r 则 q 是 r 的 A 逆命题 B 否命题 C 逆否命题 D 以上判断都不正确 2 命题 若 A B A 贝 A B B 的否命题是 A 若 A B A 则 A B B B 若 A B A 贝 A B B C 若 A B B 则 A B A D 若 A B A 则 A B B 3 命题 两条对角线不垂直的四边形不是菱形 的逆否命题是 A 若四边形不是菱形 则它的两条对角线不垂直 B 若四边形的两条对角线垂直 则它是菱形 C 若四边形的两条对角线垂直 则它不是菱形 D 若四边形是菱形 则它的两条对角线垂直 4 如果一个命题的逆命题是真命题 那么这个命题的否命题 A 是真命题 B 是假命题 C 可能是真命题也可能是假命题 D 真假由原命题的真假决定 5 命题 若 A 不等于 600 则 ABC 不是等边三角形 的否命题是 A 假命题 B 与原命题同真或同假 C 与原命题的逆否命题同真或同假 D 与原命题的逆命题同真 6 命题 若 a 3 则 a 6 以及它的逆命题 否命题 逆否命题中 真命题的个数为 A 1 个 B 2 个 C 3 个 D 4 个 7 原命题是 若 x y 0 则 x y 互为相反数 则 A 逆命题真 否命题假 逆否命题真 B 逆命题假 否命题真 逆否命题真 C 逆命题真 否命题真 逆否命题假 D 逆命题真 否命题真 逆否命题真 8 命题 若 a A 则 a A 的逆命题是 A 若 a A 则 a A B 若 a A 则 a A C 若 a A 则 a A D 若 a A 则 a A 9 用反证法证明命题 a b N ab 能被 5 整除 那么 a b 中至少有一个能被 5 整除 时 假设的内容是 A a b 都能被 5 整除 B a b 都不能被 5 整除 C a b 不都能被 5 整除 D a 都不能被 5 整除 或 b 不能被 5 整除 10 有下列四个命题 1 若 xy 1 则 x y 互为倒数 的逆命题 2 面积相等的三角形全等 的否命题 3 若 m 1 则 x2 2x m 0 有实根 的否命题 4 若 A B B 则 A B 的逆否命题 其中真命题是 A 1 2 B 2 3 C 1 2 3 D 3 4 五五 自我评价自我评价 你完成本节学案的情况为 A 很好 B 较好 C 一般 D 较差 六六 课下作业课下作业 1 已知 ab Z 用反证法证明 若 a b 是奇数 则 a 与 b 至少有一个奇数 2 已知下列三个方程 x2 4ax 4a 3 0 x2 a 1 x a2 0 x2 2ax 2a 0 至少有一个方程有实根 求实数 a 的 取值范围 提示 用反证法的思想去求解 1 2 1 充分条件与必要条件充分条件与必要条件 学习目标学习目标 正确理解充分条件 必要条件的概念 并能判断命题中 p 是 q q 是 p 的充分或必要条件 学习重点学习重点 理解充分条件和必要条件的概念 学习难点学习难点 理解充分条件和必要条件的概念 学习过程学习过程 一一 自主学习自主学习 知识链接知识链接 1 判断下面命题它们的真假性 1 若 x a2 b2 则 x 2ab 2 若 0ab 则 0a 2 写出下列命题的逆命题 否命题及逆否命题 并判断它们的真假 1 若 0ab 则 0a 2 若 0a 时 则函数 yaxb 的值随x的值的增加而增加 新课探究新课探究 1 一般地 若 p 则 q 为真命题 即由 通过推理可以得出 这时 我们就说 记为 并且说 p 是 q 的 q 是 p 的 2 如果 若 p 则 q 为假命题 那么由 q 推不出 q 记为 pq 此时我们说 q 不是 p 的充分条件 q 不是 p 的必 要条件 3 一般地 如果既有 pq 又有q p 就记作 此时 我们说 p 是q 的 简称 4 一般地 若 p q 但 q p 则称 p 是 q 的充分但不必要条件 若 p q 但 q p 则称 p 是 q 的必要但不充分条件 若 p q 且 q p 则称 p 是 q 的既不充分也不必要条件 在讨论 p 是 q 的什么条件时 就是指以下四种之一 若 p q 但 q p 则 p 是 q 的充分但不必要条件 若 q p 但 p q 则 p 是 q 的必要但不充分条件 若 p q 且 q p 则 p 是 q 的充要条件 若 p q 且 q p 则 p 是 q 的既不充分也不必要条件 二二 互动展示互动展示 1 下列 若 p 则q 形式的命题中 哪些命题中的 p 是q的充分条件 1 若 1x 则 x2 4x 3 0 2 若 f x x 则 f x 为增函数 3 若x为无理数 则 2 x 为无理数 2 下列 若 p 则q 形式的命题中 哪些命题中的q是 p 的必要条件 1 若 xy 则 22 xy 2 若两个三角形的面积相等 则这两个三角形全等 3 若a b 则ac bc 3 下列命题中 哪些 p 是q的充要条件 1 p 四边形的对角线相等 q 四边形是平行四边形 2 p 0b q 函数 2 f xaxbxc 是偶函数 3 p0 0 xy q0 xy 4 p ab q acbc 4 已知 圆 的半径为r 圆心 O 到直线l的距离为d 求证 d r 是直线l与圆 相切的充要条件 5 下列 若 p 则q 形式的命题中 哪些命题中的 p 是q的充分条件 1 若 1x 则 33x 2 若 1x 则 2 320 xx 3 若 3 x f x 则 f x 为减函数 4 若x为无理数 则 2 x 为无理数 5 若 12 ll 则 12 kk 6 下列 若 p 则q 形式的命题中 哪些命题中的q是 p 的必要条件 1 若 0a 则 0ab 2 若两个三角形的面积相等 则这两个三角形全等 3 若a b 则ac bc 4 若 xy 则 22 xy 7 下列各题中 哪些 p 是 q 的充要条件 1 p b 0 q 函数 f x ax2 bx c 是偶函数 2 p x 0 y 0 q xy 0 3 p a b q a c b c 4 p x 5 q x 10 5 p a b q a2 b2 三三 总结拓展总结拓展 知识小结 知识小结 四四 检测反馈检测反馈 1 已知 p x1 x2 是方程 x2 5x 6 0 的两根 q x1 x2 5 则 p 是 q 的 A 充分但不必要条件 B 必要但不充分条件 C 充要条件D 既不充分也不必要条件 2 p 是 q 的充要条件的是 A p 3x 2 5 q 2x 3 5 B p a 2 b 2 q a b C p 四边形的两条对角线互相垂直平分 q 四边形是正方形 D p a 0 q 关于 x 的方程 ax 1 有惟一解 3 若 A 是 B 成立的充分条件 D 是 C 成立的必要条件 C 是 B 成立的充要条件 则 D 是 A 成立的 A 充分条件 B 必要条件 C 充要条件 D 既不充分也不必要条件 4 ax2 2x 1 0 至少有一个负实根的充要条件是 A 0 a 1 B a 1 C a 1 D 0 a 1 或 a 0 5 已知真命题 a bc d 和 a be f 则 c d 是 e f 的 条件 6 已知 p q 都是 r 的必要条件 s 是 r 的充分条件 q 是 s 的充分条件 那么 s r p 分别是 q 的什么条件 五五 自我评价自我评价 你完成本节学案的情况为 A 很好 B 较好 C 一般 D 较差 六六 作业作业 1 为使 p 2 xxx 是 q 0 1 2 axaxxx 的充分条件 实数 a 应该满足什么条 件 能使 q 是 p 的充分条件吗 为什么 2 证明关于x的方程 0 2 cbxax 有一个根为 1 的充要条件是 a b c 0 1 31 3 简单的逻辑联结词简单的逻辑联结词 班级 姓名 学习目标 1 通过数学实例 正确理解逻辑联结词 且 或 非 的含义和表示 2 能正确地利用 或 且 非 表述相关的数学内容 会判断用 且 或 非 联结成新命题的真 假 3 知道命题的否定与否命题的区别 学习重点 1 掌握真值表的方法 2 了解逻辑联结词 且 或 非 的含义 并能正确的表示相关教学内容 学习难点 逻辑联结词的含义及用逻辑连接词 且 或 非 联结的新命题的真假性自主学习 学习过程 一 自主学习 知识链接 1 判断下面的语句是否为命题 若是命题 指出它的真假 1 对于任意的实数 a 都有 2 2 10a xa 3 这道数学题目有趣吗 4 10 可以被 2 或或 5 整除 5 菱形的对角线互相垂直且且平分 6 0 5 非非整数 这里的这里的 或或 且且 非非 称为逻辑联结词称为逻辑联结词 新课探究 1 下列各组命题中 三个命题间有什么关系 1 12 能被 3 整除 12 能被 4 整除 12 能被 3 整除且能被 4 整除 2 27 是 7 的倍数 27 是 9 的倍数 27 是 7 的倍数或是 9 的倍数 3 35 能被 5 整除 35 不能被 5 整除 方程 x2 x 1 0 有实数根 方程 x2 x 1 0 无实数根 2 归纳定义 一般地 用联结词 且 把命题 p 和命题 q 联结起来 就得到一个新命题 记作 读作 一般地 用联结词 或 把命题 p 和命题 q 联结起来 就得到一个新命题 记作 读作 一般地 对一个命题 p 全盘否定 就得到一个新命题 记作 读作 注意 注意 p 或 q p 且 q 命题中的 p q 是两个命题 而原命题 逆命题 否命题 逆否命题中的 p q 是一个命题的条件和结论两个部分 3 命题 p q 与命题 p q 的真假 命题 p 与命题 p 的真假间的关系 1 当 p q 都是真命题时 p q 是真命题 当 p q 两个命题中有一个命题是假命题时 p q 是假命题 2 当 p q 两个命题中有一个是真命题时 p q 是真命题 当 p q 两个命题都是假命题时 p q 是假命题 3 若 p 是真命题 则 p 必是假命题 若 p 是假命题 则 p 必是真命题 即一假则假 即一真则真 4 命题的否定与否命题的区别 命题的否定是否定命题的结论 而命题的否命题是对原命题的条件和结论同时进行否定 命题的否定是否定命题的结论 而命题的否命题是对原命题的条件和结论同时进行否定 因此在解题时应分请命题 的条件和结论 5 写出下表中各给定语的否定语 若给定语为等于大于是都是至多有一个 至少有一个 pqp q 真真 真真 假真 假假 pqp q 真真 真假 真假 假假 p P 真 真 其否定语分别为 二 互动展示 1 将下列命题分别用 且 与 或 联结成新命题 p q 与 p q 的形式 并判断它们的真假 1 p 平行四边形的对角线互相平分 q 平行四边形的对角线相等 2 p 菱形的对角线互相垂直 q 菱形的对角线互相平分 3 p 35 是 15 的倍数 q 35 是 7 的倍数 2 选择适当的逻辑联结词 且 或 或 改写下列命题 并判断它们的真假 1 1 既是奇数 又是素数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论