




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2020届宁夏回族自治区中卫市海原县第一中学高三上学期期末数学(理)试题一、单选题1已知复数z=2+i,则ABC3D5【答案】D【解析】题先求得,然后根据复数的乘法运算法则即得.【详解】 故选D.【点睛】本题主要考查复数的运算法则,共轭复数的定义等知识,属于基础题.2设集合,若,则 ( )ABCD【答案】C【解析】 集合, 是方程的解,即 ,故选C3如图,在平行四边形中,对角线与交于点,且,则( )ABCD【答案】C【解析】画出图形,以为基底将向量进行分解后可得结果【详解】画出图形,如下图选取为基底,则,故选C【点睛】应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面的一组基底,基底可以有无穷多组,在解决具体问题时,合理选择基底会给解题带来方便(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算4我国古代数学名著算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A1盏B3盏C5盏D9盏【答案】B【解析】【详解】设塔顶的a1盏灯,由题意an是公比为2的等比数列,S7=381,解得a1=3故选B5已知角的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y2x上,则cos2( )ABCD【答案】B【解析】根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tan的值,然后根据同角三角函数间的基本关系求出cos的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把cos的平方代入即可求出值【详解】解:根据题意可知:tan2,所以cos2,则cos22cos2121故选B【点睛】此题考查学生掌握直线的斜率与倾斜角之间的关系,灵活运用同角三角函数间的基本关系化简求值,是一道中档题6设函数,( )A3B6C9D12【答案】C【解析】.故选C.7设函数f(x)=cos(x+),则下列结论错误的是Af(x)的一个周期为2By=f(x)的图像关于直线x=对称Cf(x+)的一个零点为x=Df(x)在(,)单调递减【答案】D【解析】f(x)的最小正周期为2,易知A正确;fcoscos31,为f(x)的最小值,故B正确;f(x)coscos,fcoscos0,故C正确;由于fcoscos1,为f(x)的最小值,故f(x)在上不单调,故D错误故选D.8在同一直角坐标系中,函数且的图象可能是( )ABCD【答案】D【解析】本题通过讨论的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.9由曲线,直线及轴所围成的平面图形的面积为( )A6B4CD【答案】D【解析】先求可积区间,再根据定积分求面积.【详解】由,得交点为,所以所求面积为,选D.【点睛】本题考查定积分求封闭图形面积,考查基本求解能力,属基本题.10已知直三棱柱中,则异面直线与所成角的余弦值为( )ABCD【答案】C【解析】如图所示,补成直四棱柱,则所求角为,易得,因此,故选C平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:平移:平移异面直线中的一条或两条,作出异面直线所成的角;认定:证明作出的角就是所求异面直线所成的角;计算:求该角的值,常利用解三角形;取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角求异面直线所成的角要特别注意异面直线之间所成角的范围11已知是定义域为的奇函数,满足.若,则( )ABCD【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解12设函数是奇函数()的导函数,当时,则使得成立的的取值范围是( )ABCD【答案】A【解析】【详解】构造新函数,,当时.所以在上单减,又,即.所以可得,此时,又为奇函数,所以在上的解集为:.故选A.点睛:本题主要考查利用导数研究函数的单调性,需要构造函数,例如,想到构造.一般:(1)条件含有,就构造,(2)若,就构造,(3),就构造,(4)就构造,等便于给出导数时联想构造函数.二、填空题13已知向量的夹角为,则_【答案】【解析】=故答案为14若直线过点(1,2),则2a+b的最小值为_.【答案】【解析】 ,当且仅当 时取等号.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.15在同一平面直角坐标系中,函数的图象与的图象关于直线对称而函数的图象与的图象关于轴对称,若,则的值是_【答案】【解析】利用两个图象间的对称性,建立方程组即可.【详解】函数y=f(x)的图象与y=ex的图象关于直线y=x对称函数y=f(x)与y=ex互为反函数则f(x)=lnx,又由y=f(x)的图象与y=g(x)的图象关于y轴对称g(x)=ln(x),又g(m)=1ln(m)=1,故答案为【点睛】互为反函数的两个函数图象关于线y=x对称,有f(x)的图象上有(a,b)点,则(b,a)点一定在其反函数的图象上;如果两个函数图象关于 X轴对称,有f(x)的图象上有(a,b)点,则(a,b)点一定在函数g(x)的图象上;如果两个函数图象关于 Y轴对称,有f(x)的图象上有(a,b)点,则(a,b)点一定在函数g(x)的图象上;如果两个函数图象关于原点对称,有f(x)的图象上有(a,b)点,则(a,b)点一定在函数g(x)的图象上16下列说法正确的是_(请把你认为正确说法的序号都填上).(1)函数的最小正周期为(2)若命题:“,使得”,则:“,均有”(3)中,是的充要条件;(4)已知点N在所在平面内,且,则点N是的重心;【答案】(1) (2) (3) (4)【解析】根据降幂公式和辅助角公式,化简即可判断(1);根据特称命题的否定即可判断(2);根据三角形中的边角关系可判断(3);根据三角形中重心的向量表示可判断(4).【详解】对于(1),由降幂公式及辅助角公式,化简可得所以最小正周期为,故(1)正确;对于(2), 根据特称命题的否定可知:命题: “,使得”则:“,均有”,所以(2)正确;对于(3), 中由正弦定理可知,若则,根据三角形中大边对大角可知;若,则,由正弦定理可知.所以是的充要条件,故(3)正确;对于(4), 点N在所在平面内,且设中点为,由向量的线性运算可得则点N是的重心,所以(4)正确.综上可知, 正确的是(1) (2) (3) (4)故答案为: (1) (2) (3) (4)【点睛】本题考查了三角函数式的化简应用,降幂公式及辅助角公式的用法,充分必要条件的判断,特称命题否定形式,三角形中重心的向量表示,综合性较强,属于基础题.三、解答题17如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D. 现测得,并在点C测得塔顶A的仰角为,求塔高.【答案】【解析】【详解】在BCD中,. 由正弦定理得所以在RtABC中,塔高为.18记为等差数列的前项和,已知,(1)求的通项公式;(2)当为何值时,有最大值,并求其最大值【答案】(1) (2)n=6或n=7,最大值为42【解析】(1)根据等差数列的通项公式及前n项和公式,可得关于与的方程组,即可求得的通项公式;(2)求得的表达式,根据配方法及,即可求得的最大值.【详解】(1)设公差为,由题意得即,解方程可得 (2)由(1)得当取与最接近的整数,即6或7时,有最大值最大值为【点睛】本题考查了等差数列的通项公式与前n项和公式的简单应用,前n项和最值的求法,属于基础题.19如图,四棱锥P-ABCD中,底面ABCD为矩形,PA平面ABCD,E为PD的中点 (1) 证明:PB平面AEC (2) 设二面角D-AE-C为60,AP=1,AD=,求三棱锥E-ACD的体积【答案】【解析】试题分析:()连接BD交AC于O点,连接EO,只要证明EOPB,即可证明PB平面AEC;()延长AE至M连结DM,使得AMDM,说明CMD=60,是二面角的平面角,求出CD,即可三棱锥E-ACD的体积试题解析:(1)证明:连接BD交AC于点O,连接EO.因为ABCD为矩形,所以O为BD的中点又E为PD的中点,所以EOPB.因为EO平面AEC,PB平面AEC,所以PB平面AEC. (2)因为PA平面ABCD,ABCD为矩形,所以AB,AD,AP两两垂直如图,以A为坐标原点,AD,AP的方向为x轴y轴z轴的正方向,|为单位长,建立空间直角坐标系Axyz,则D,E,.设B(m,0,0)(m0),则C(m,0),(m,0)设n1(x,y,z)为平面ACE的法向量,则即可取n1.又n2(1,0,0)为平面DAE的法向量,由题设易知|cosn1,n2|,即,解得m.因为E为PD的中点,所以三棱锥EACD的高为.三棱锥EACD的体积V.【考点】二面角的平面角及求法;棱柱、棱锥、棱台的体积;直线与平面平行的判定20设数列满足,(1)求数列的通项公式;(2)令,求数列的前项和【答案】【解析】试题分析: (1)结合数列递推公式形式可知采用累和法求数列的通项公式,求解时需结合等比数列求和公式;(2)由得数列的通项公式为,求和时采用错位相减法,在的展开式中两边同乘以4后,两式相减可得到试题解析:(1) 由已知,当时,=,而,所以数列的通项公式为(2) 由知 7分从而得,即【考点】1累和法求数列通项公式;2错位相减法求和21设函数.(1)若,求的单调区间;(2)若当时恒成立,求的取值范围【答案】(1) f(x)在(,0)单调减少,在(0,)单调增加;(2) a的取值范围为(,.【解析】(1)a0时,f(x)ex1x,f(x)ex1.分别令f(x)0可求的单调区间;(2求导得到)f(x)ex12ax.由(1)知ex1x,当且仅当x0时等号成立故问题转化为f(x)x2ax(12a)x,从而对12a的符号进行讨论即可得出结果.【详解】(1)a0时,f(x)ex1x,f(x)ex1.当x(,0)时,f(x)0.故f(x)在(,0)单调减少,在(0,)单调增加(2)f(x)ex12ax.由(1)知ex1x,当且仅当x0时等号成立故f(x)x2ax(12a)x,从而当12a0,即a时,f(x)0(x0),而f(0)0,于是当x0时,f(x)0.由ex1x(x0)得ex1x(x0),从而当a时,f(x)ex12a(ex1)ex(ex1)(ex2a),故当x(0,ln2a)时, f(x)0,而f(0)0,于是当x(0,ln2a)时,f(x)0,综上可得a的取值范围为(,【点睛】本题考查利用导数研究函数的性质,属中档题.22选修44:坐标系与参数方程。已知曲线C:(t为参数), C:(为参数)。(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线(t为参数)距离的最小值。【答案】()为圆心是(,半径是1的圆.为中心是坐标原点,焦点在x轴上,长半轴长是8,短半轴长是3的椭圆.()【解析】试题分析:(1)分别消去两曲线参数方程中的参数得到两曲线的直角坐标方程,即可得到曲线表示一个圆;曲线表示一个椭圆;(2)把的值代入曲线的参数方程得点的坐标,然后把直线的参数方程化为普通方程,根据曲线的参数方程设出的坐标,利用中点坐标公式表示出的坐标,利用点到直线的距离公式标准处到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值.试题解析:(1)为圆心是,半径是1的圆,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年人格心理考试题目及答案
- 2025年外科专科考试试题及答案
- 即兴评述高考试卷及答案
- 专职网格员考试题及答案
- 音乐考试科普知识题及答案
- 恐龙派对课件
- 江苏太仓中考试题及答案
- 急诊临床知识培训内容课件
- 沈阳消防考试题目及答案
- 软技能培训考试题及答案
- 2025年电子商务设计师国家资格考试试题及答案解析
- 2025版化学检验工高级工考核题库(含答案)
- 综合执法局执法考试试题库(附答案)
- 环境保护与节能减排课件
- 2025年软件开发实习生笔试模拟题及面试技巧
- 教科版新版科学三年级上册《8.天气的影响》教案
- 宣传广告板、宣传彩页制作合同协议书范本
- 工厂数据采集与分析系统方案
- 2025证券股份面试题目及答案
- 2025上海浦东新区国资委直属单位公开招聘试题含答案
- 2025年AI应用AI Agent架构新范式报告
评论
0/150
提交评论