江苏2018版高考数学复习坐标系与参数方程第1课时绝对值不等式教师用书理苏教版.docx_第1页
江苏2018版高考数学复习坐标系与参数方程第1课时绝对值不等式教师用书理苏教版.docx_第2页
江苏2018版高考数学复习坐标系与参数方程第1课时绝对值不等式教师用书理苏教版.docx_第3页
江苏2018版高考数学复习坐标系与参数方程第1课时绝对值不等式教师用书理苏教版.docx_第4页
江苏2018版高考数学复习坐标系与参数方程第1课时绝对值不等式教师用书理苏教版.docx_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1课时绝对值不等式1绝对值不等式的解法(1)含绝对值的不等式|x|a的解集:不等式a0a0a0|x|a(,a)(a,)(,0)(0,)R(2)|axb|c(c0)和|axb|c(c0)型不等式的解法:|axb|ccaxbc;|axb|caxbc或axbc;(3)|xa|xb|c(c0)和|xa|xb|c(c0)型不等式的解法:利用绝对值不等式的几何意义求解,体现了数形结合的思想;利用“零点分段法”求解,体现了分类讨论的思想;通过构造函数,利用函数的图象求解,体现了函数与方程的思想2含有绝对值的不等式的性质(1)如果a,b是实数,则|a|b|ab|a|b|,当且仅当ab0时,等号成立(2)如果a,b,c是实数,那么|ac|ab|bc|,当且仅当(ab)(bc)0时,等号成立1(2015山东改编)解不等式|x1|x5|2的解集解当x1时,原不等式可化为1x(5x)2,42,不等式恒成立,x1.当1x5时,原不等式可化为x1(5x)2,x4,1x4,当x5时,原不等式可化为x1(x5)2,该不等式不成立综上,原不等式的解集为(,4)2若存在实数x使|xa|x1|3成立,求实数a的取值范围解|xa|x1|(xa)(x1)|a1|,要使|xa|x1|3有解,可使|a1|3,3a13,2a4.3若不等式|2x1|x2|a2a2对任意实数x恒成立,求实数a的取值范围解设y|2x1|x2|当x5;当2x;当x时,y3x1,故函数y|2x1|x2|的最小值为.因为不等式|2x1|x2|a2a2对任意实数x恒成立,所以a2a2.解不等式a2a2,得1a,故a的取值范围为1,.题型一绝对值不等式的解法例1(2015课标全国)已知函数f(x)|x1|2|xa|,a0.(1)当a1时,求不等式f(x)1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围解(1)当a1时,f(x)1化为|x1|2|x1|10.当x1时,不等式化为x40,无解;当1x0,解得x0,解得1x1的解集为.(2)由题设可得,f(x)所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A,B(2a1,0),C(a,a1),ABC的面积为(a1)2.由题设得(a1)26,故a2.所以a的取值范围为(2,)思维升华解绝对值不等式的基本方法有(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解(1)(2016全国乙卷)已知函数f(x)|x1|2x3|.(1)在图中画出yf(x)的图象;(2)求不等式|f(x)|1的解集解(1)f(x)yf(x)的图象如图所示(2)由f(x)的表达式及图象,当f(x)1时,可得x1或x3;当f(x)1时,可得x或x5,故f(x)1的解集为x|1x3;f(x)1的解集为.题型二利用绝对值不等式求最值例2(1)对任意x,yR,求|x1|x|y1|y1|的最小值(2)对于实数x,y,若|x1|1,|y2|1,求|x2y1|的最大值解(1)x,yR,|x1|x|(x1)x|1,|y1|y1|(y1)(y1)|2,|x1|x|y1|y1|123.|x1|x|y1|y1|的最小值为3.(2)|x2y1|(x1)2(y1)|x1|2(y2)2|12|y2|25,即|x2y1|的最大值为5.思维升华求含绝对值的函数最值时,常用的方法有三种(1)利用绝对值的几何意义(2)利用绝对值三角不等式,即|a|b|ab|a|b|.(3)利用零点分区间法(1)若关于x的不等式|2 014x|2 015x|d有解,求d的取值范围(2)(2016苏州二模)不等式|x|a2|sin y对一切非零实数x,y均成立,求实数a的取值范围解(1)|2 014x|2 015x|2 014x2 015x|1,关于x的不等式|2 014x|2 015x|d有解时,d1.(2)x(,22,),|x|2,),其最小值为2.又sin y的最大值为1,故不等式|x|a2|sin y恒成立时,有|a2|1,解得a1,3题型三绝对值不等式的综合应用例3(2016全国甲卷)已知函数f(x),M为不等式f(x)2的解集(1)求M;(2)证明:当a,bM时,|ab|1ab|.(1)解f(x)当x时,由f(x)2得2x1,所以1x;当x时,f(x)2;当x时,由f(x)2得2x2,解得x1,所以x1.所以f(x)2的解集Mx|1x1(2)证明由(1)知,当a,bM时,1a1,1b1,从而(ab)2(1ab)2a2b2a2b21(a21)(1b2)0,即(ab)2(1ab)2,因此|ab|a对于一切xR恒成立,求实数a的取值范围解由绝对值的几何意义知:|x4|x5|9,则log3(|x4|x5|)2,所以要使不等式log3(|x4|x5|)a对于一切xR恒成立,则需a0恒成立,即(|x3|x7|)minm,由于x轴上的点到点(3,0)和点(7,0)的距离之和的最小值为4,所以要使不等式恒成立,则m4.5(2016常州模拟)求不等式|x3|2x1|1的解集解当x3时,原不等式化为(x3)(12x)1,解得x10,x3.当3x时,原不等式化为(x3)(12x)1,解得x,3x.当x时,原不等式化为(x3)(2x1)2,x2.综上可知,原不等式的解集为.6(2016盐城模拟)已知关于x的不等式|2xm|1的整数解有且仅有一个值为2,求关于x的不等式|x1|x3|m的解集解由不等式|2xm|1,可得x,不等式的整数解为2,2,解得3m5.再由不等式仅有一个整数解2,m4.本题即解不等式|x1|x3|4,当x3时,不等式等价于x1x34,解得x4,不等式解集为x|x4综上,原不等式解集为(,04,)7设函数f(x)|2x1|x4|.(1)解不等式f(x)2;(2)求函数yf(x)的最小值解(1)方法一令2x10,x40分别得x,x4.原不等式可化为:或或原不等式的解集为.方法二f(x)|2x1|x4|画出f(x)的图象,如图所示求得y2与f(x)图象的交点为(7,2),.由图象知f(x)2的解集为.(2)由(1)的方法二知:f(x)min.8(2016苏州模拟)已知函数f(x)|x3|x2|.(1)求不等式f(x)3的解集;(2)若f(x)|a4|有解,求a的取值范围解(1)f(x)|x3|x2|3,当x2时,有x3(x2)3,解得x2;当x3时,x3(x2)3,解得x;当3x2时,有2x13,解得1x2.综上,f(x)3的解集为x|x1(2)由绝对值不等式的性质可得,|x3|x2|(x3)(x2)|5,则有5|x3|x2|5.若f(x)|a4|有解,则|a4|5,解得1a9.所以a的取值范围是1,99(2016镇江模拟)已知a和b是任意非零实数(1)求的最小值;(2)若不等式|2ab|2ab|a|(|2x|2x|)恒成立,求实数x的取值范围解(1)4,的最小值为4.(2)若不等式|2ab|2ab|a|(|2x|2x|)恒成立,即|2x|2x|恒成立,故|2x|2x|min.由(1)可知,的最小值为4,x的取值范围即为不等式|2x|2x|4的解集解不等式得2x2,故实数x的取值范围为2,210已知函数f(x)|2x1|2xa|,g(x)x3.(1)当a2时,求不等式f(x)1,且当x时,f(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论