中考函数压轴存在问题19年真题干货.doc_第1页
中考函数压轴存在问题19年真题干货.doc_第2页
中考函数压轴存在问题19年真题干货.doc_第3页
中考函数压轴存在问题19年真题干货.doc_第4页
中考函数压轴存在问题19年真题干货.doc_第5页
已阅读5页,还剩12页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数压轴题之存在问题【2019 深圳】如图抛物线经y=ax2+bx+c过点A(-1,0),点C(0,3),且OB=OC (1)求抛物线的解析式及其对称轴;(2)点D、E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值;(3)点P为抛物线上一点,连接CP,直线CP把四边形APBC面积分为35两部分,求点P的坐标【2019 陇南】如图,抛物线y=ax2+bx+4交x轴于A(-3,0),B(4,0)两点,与y轴交于点C,连接AC,BC点P是第一象限内抛物线上的一个动点,点P的横坐标为m(1)求此抛物线的表达式;(2)过点P作PMx轴,垂足为点M,PM交BC于点Q试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PNBC,垂足为点N请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?【2019 庆阳】如图,抛物线yax2+bx+4交x轴于A(3,0),B(4,0)两点,与y轴交于点C,连接AC,BC点P是第一象限内抛物线上的一个动点,点P的横坐标为m(1)求此抛物线的表达式;(2)过点P作PMx轴,垂足为点M,PM交BC于点Q试探究点P在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形若存在,请求出此时点Q的坐标,若不存在,请说明理由;(3)过点P作PNBC,垂足为点N请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?【2019 甘肃】如图,已知二次函数yx2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标【2019 安顺】如图,抛物线yx2+bx+c与直线yx+3分别相交于A,B两点,且此抛物线与x轴的一个交点为C,连接AC,BC. 已知A(0,3),C(3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l上找一点M,使|MBMC|的值最大,并求出这个最大值;(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQPA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与ABC相似?若存在,请求出所有符合条件的点P的坐标;若还在存在,请说明理由.【2019 齐齐哈尔】如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1) 求抛物线的解析式;(2) 点D在抛物线的对称轴上,当ACD的周长最小时,点D的坐标为 ;(3) 点E是第四象限内抛物线上的动点,连接CE和BE. 求BCE面积的最大值及此时点E的坐标;(4) 若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【2019荆州】如图,在平面直角坐标系中,平行四边形OABC的顶点A,C的坐标分别为(6,0),(4,3),经过B,C两点的抛物线与x轴的一个交点D的坐标为(1,0)(1)求该抛物线的解析式;(2)若AOC的平分线交BC于点E,交抛物线的对称轴于点F,点P是x轴上一动点,当PE+PF的值最小时,求点P的坐标;(3)在(2)的条件下,过点A作OE的垂线交BC于点H,点M,N分别为抛物线及其对称轴上的动点,是否存在这样的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由【2019 随州】如图1,在平面直角坐标系中,点O为坐标原点,抛物线与轴交于点A(0,6),与轴交于点B(-2,0),C(6,0).(1)直接写出抛物线的解析式及其对称轴;(2)如图2,连接AB,AC,设点P(m,n)是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点P作PDAC于点E,交x轴于点D,过点P作PGAB交AC于点F,交轴于点G.设线段DG的长为,求与的函数关系式,并注明的取值范围;(3)在(2)的条件下,若PDG的面积为,求点P的坐标;设M为直线AP上一动点,连接OM交直线AC于点S,则点M在运动过程中,在抛物线上是否存在点R,使得ARS为等腰直角三角形,若存在,请直接写出点M及其对应的点R的坐标;若不存在,请说明理由.【2019咸宁】如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,抛物线经过A,B两点且与x轴的负半轴交于点C.(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当ABD=2BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.【2019娄底】如图,抛物线y=ax2+bx+c(a、b、c为常数,a0)经过点A(1,0),B(5,6),C(6,0)(1)求抛物线的解析式;(2)如图,在直线AB下方的抛物线上是否存有点P使四边形PACB的面积最大?若存有,请求出点P的坐标;若不存有,请说明理由;(3)若点Q为抛物线的对称轴上的一个动点,试指出QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标【2019岳阳】如图1,AOB的三个顶点A、O、B分别落在抛物线F1:的图象上,点A的横坐标为4,点B的纵坐标为2(点A在点B的左侧)(1)求点A、B的坐标;(2)将AOB绕点O逆时针旋转90得到AOB,抛物线F2:yax2+bx+4经过A、B两点,已知点M为抛物线F2的对称轴上一定点,且点A恰好在以OM为直径的圆上,连接OM、AM,求OAM的面积;(3)如图2,延长OB交抛物线F2于点C,连接AC,在坐标轴上是否存在点D,使得以A、O、D为顶点的三角形与OAC相似若存在,请求出点D的坐标;若不存在,请说明理由【2019 淮安】如图,已知二次函数的图象与x轴交于A、B两点,D为顶点,其中点B的坐标为(5,0),点D的坐标为(1,3)(1)求该二次函数的表达式;(2)点E是线段BD上的一点,过点E作x轴的垂线,垂足为F,且EDEF,求点E的坐标(3)试问在该二次函数图象上是否存在点G,使得ADG的面积是BDG的面积的?若存在,求出点G的坐标;若不存在,请说明理由【2019 常州】如图,二次函数yx2+bx+3的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(1,0),点D为OC的中点,点P在抛物线上(1)b ;(2)若点P在第一象限,过点P作PHx轴,垂足为H,PH与BC、BD分别交于点M、N是否存在这样的点P,使得PMMNNH?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点P的横坐标小于3,过点P作PQBD,垂足为Q,直线PQ与x轴交于点R,且SPQB2SQRB,求点P的坐标【2019 连云港】如图,在平面直角坐标系xOy中,抛物线L1:yx2+bx+c过点C(0,3),与抛物线L2:的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分PCR若OQPR,求出点Q的坐标【2019 盐城】如图所示,二次函数yk(x1)2+2的图象与一次函数ykxk+2的图象交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交于C、D两点,其中k0(1)求A、B两点的横坐标;(2)若OAB是以OA为腰的等腰三角形,求k的值;(3)二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得ODC2BEC,若存在,求出k的值;若不存在,说明理由【2019 菏泽】如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,-2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PDx轴于点D,交直线BC于点E,抛物线的对称轴是直线x-1(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PEOD,求PBE的面积(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由【2019 临沂】在平面直角坐标系中,直线yx+2与x轴交于点A,与y轴交于点B,抛物线yax2+bx+c(a0)经过点A、B(1)求a、b满足的关系式及c的值(2)当x0时,若yax2+bx+c(a0)的函数值随x的增大而增大,求a的取值范围(3)如图,当a-1时,在抛物线上是否存在点P,使PAB的面积为1?若存在,请求出符合条件的所有点P的坐标;若不存在,请说明理由【2019 泰安】若二次函数yax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,-2),且过点C(2,-2)(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且SPBA4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使ABOABM?若存在,求出点M到y轴的距离;若不存在,请说明理由【2019 淄博】如图,顶点为M的抛物线yax2+bx+3与x轴交于A(3,0),B(1,0)两点,与y轴交于点C(1)求这条抛物线对应的函数表达式;(2)问在y轴上是否存在一点P,使得PAM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由(3)若在第一象限的抛物线下方有一动点D,满足DAOA,过D作DGx轴于点G,设ADG的内心为I,试求CI的最小值【2019 广安】如图,抛物线y-x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:ykx+n与y轴交于点C,与抛物线y-x2+bx+c的另一个交点为D,已知A(-1,0),D(5,-6),P点为抛物线y-x2+bx+c上一动点(不与A、D重合)(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PEx轴交直线l于点E,作PFy轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由【2019 眉山】如图1,在平面直角坐标系中,抛物线y-x2+bx+c经过点A(5,0)和点B(1,0)(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PEx轴于点E,PGy轴,交抛物线于点G,过点G作GFx轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;(3)如图2,连接AD、BD,点M在线段AB上(不与A、B重合),作DMNDBA,MN交线段AD于点N,是否存在这样点M,使得DMN为等腰三角形?若存在,求出AN的长;若不存在,请说明理由【2019 内江】两条抛物线C1:y13x26x1与C2:y2x2mx+n的顶点相同(1)求抛物线C2的解析式;(2)点A是抛物找C2在第四象限内图象上的一动点,过点A作APx轴,P为垂足,求AP+OP的最大值;(3)设抛物线C2的顶点为点C,点B的坐标为(1,4),问在C2的对称轴上是否存在点Q,使线段QB绕点Q顺时针旋转90得到线段QB,且点B恰好落在抛物线C2上?若存在,求出点Q的坐标;若不存在,请说明理由【2019 宜宾】如图,在平面直角坐标系xOy中,已知抛物线yax2-2x+c与直线ykx+b都经过A(0,-3)、B(3,0)两点,该抛物线的顶点为C(1)求此抛物线和直线AB的解析式;(2)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,求点M的坐标;若不存在,请说明理由;(3)设点P是直线AB下方抛物线上的一动点,当PAB面积最大时,求点P的坐标,并求PAB面积的最大值【2019 资阳】如图,抛物线y-x2+bx+c过点A(3,2),且与直线y-x+交于B、C两点,点B的坐标为(4,m)(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DEx轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值;(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使AQM45?若存在,求点Q的坐标;若不存在,请说明理由【2019 自贡】如图,已知直线AB与抛物线C:yax2+2x+c相交于点A(1,0)和点B(2,3)两点(1)求抛物线C函数表达式;(2)若点M是位于直线AB上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,求此时平行四边形MANB的面积S及点M的坐标;(3)在抛物线C的对称轴上是否存在定点F,使抛物线C上任意一点P到点F的距离等于到直线y的距离?若存在,求出定点F的坐标;若不存在,请说明理由【2019 重庆(a卷)】如图,在平面直角坐标系中,抛物线yx22x3与x轴交于点A,B(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MNBD,交抛物线于点N(点N在对称轴的右侧),过点N作NHx轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;(2)在(1)中,当MN取得最大值,HF+FP+PC取得最小值时,把点P向上平移个单位得到点Q,连结AQ,把AOQ绕点O顺时针旋转一定的角度(0360),得到AOQ,其中边AQ交坐标轴于点G在旋转过程中,是否存在一点G,使得QQOG?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由【2019 重庆(b卷)】在平面直角坐标系中,抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q(1)如图1,连接AC,BC若点P为直线BC上方抛物线上一动点,过点P作PEy轴交BC于点E,作PFBC于点F,过点B作BGAC交y轴于点G点H,K分别在对称轴和y轴上运动,连接PH,HK当PEF的周长最大时,求PH+HK+KG的最小值及点H的坐标(2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D,N为直线DQ上一点,连接点D,C,N,DCN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论