已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学选修2-2苏教版 第二章 推力与证明 2.4复习课一、教学目标:1了解本章知识结构。2进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识。3认识数学本质,把握数学本质,增强创新意识,提高创新能力。二、教学重点:进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识。难点:认识数学本质,把握数学本质,增强创新意识,提高创新能力三、教学过程:【创设情境】推理与证明推理证明合情推理演绎推理直接证明间接证明类比推理归纳推理 分析法 综合法 反证法数学归纳法一、知识结构:【探索研究】我们从逻辑上分析归纳、类比、演绎的推理形式及特点;揭示了分析法、综合法、数学归纳法和反证法的思维过程及特点。通过学习,进一步感受和体会常用的思维模式和证明方法,形成对数学的完整认识。【例题评析】例1:如图第n个图形是由正边形“扩展”而来,(,)。则第n2个图形中共有_个顶点。变题:黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:第1个第2个第3个则第n个图案中有白色地面砖 块。例2:长方形的对角线与过同一个顶点的两边所成的角为,则=1,将长方形与长方体进行类比,可猜测的结论为:_;变题1:已知,m是非零常数,xR,且有= ,问f(x)是否是周期函数?若是,求出它的一个周期,若不是,说明理由。变题2:数列的前n项和记为Sn,已知证明:()数列是等比数列;()例3:设f(x)=ax2+bx+c(a0),若函数f(x+1)与函数f(x)的图象关于y轴对称,求证:为偶函数。例4:设Sn=1+ (n1,nN),求证: ()评析:数学归纳法证明不等式时,经常用到“放缩”的技巧。变题:是否存在a、b、c使得等式122+232+n(n+1)2=(an2+bn+c) 对于一切正整数n都成立?证明你的结论。 解 假设存在a、b、c使题设的等式成立,这时令n=1,2,3,有于是,对n=1,2,3下面等式成立122+232+n(n+1)2=记Sn=122+232+n(n+1)2(1)n=1时,等式以证,成立。(2)设n=k时上式成立,即Sk= (3k2+11k+10)那么Sk+1=Sk+(k+1)(k+2)2=(k+2)(3k+5)+(k+1)(k+2)2= (3k2+5k+12k+24)=3(k+1)2+11(k+1)+10也就是说,等式对n=k+1也成立 综上所述,当a=3,b=11,c=10时,题设对一切自然数n均成立 【课堂小结】体会常用的思维模式和证明方法。【反馈练习】1(2005辽宁)在R上定义运算若不等式对任意实数成立, 则( )ABCD2定义A*B,B*C,C*D,D*B分别对应下列图形(1)(2)(3)(4)那么下列图形中(1)(2)(3)(4)可以表示A*D,A*C的分别是 ( ) A(1)、(2) B(2)、(3) C(2)、(4) D(1)、(4)3 已知f(n)=(2n+7)3n+9,存在自然数m,使得对任意nN,都能使m整除f(n),则最大的m的值为( )A 30B 26C 36D 6解析 f(1)=36,f(2)=108=336,f(3)=360=1036f(1),f(2),f(3)能被36整除,猜想f(n)能被36整除 证明 n=1,2时,由上得证,设n=k(k2)时,f(k)=(2k+7)3k+9能被36整除,则n=k+1时,f(k+1)f(k)=(2k+9)3k+1(2k+7)3k=(6k+27)3k(2k+7)3k=(4k+20)3k=36(k+5)3k2(k2) f(k+1)能被36整除f(1)不能被大于36的数整除,所求最大的m值等于36 4 已知数列bn是等差数列,b1=1,b1+b2+b10=145 (1)求数列bn的通项公式bn;(2)设数列an的通项an=loga(1+)(其中a0且a1)记Sn是数列an的前n项和,试比较Sn与logabn+1的大小,并证明你的结论 解 (1) 设数列bn的公差为d,由题意得,bn=3n2(2)证明 由bn=3n2知Sn=loga(1+1)+loga(1+)+loga(1+)=loga(1+1)(1+)(1+ )而logabn+1=loga,于是,比较Sn与logabn+1的大小比较(1+1)(1+)(1+)与的大小 取n=1,有(1+1)=取n=2,有(1+1)(1+推测 (1+1)(1+)(1+) (*)当n=1时,已验证(*)式成立 假设n=k(k1)时(*)式成立,即(1+1)(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浆染联合机挡车工设备安全技术规程
- 激光加工设备装调工设备技术规程
- 公司农作物种植技术员工艺作业技术规程
- 水电安装施工组织设计
- 四年级儿童心理导航
- 广东省湛江市雷州市四校2025届九年级下学期中考三模数学试卷(含解析)
- 非金属及其化合物(讲义)-高考化学二轮复习
- 2025福建漳州市龙海区嘉达出行服务有限公司招聘10人笔试历年参考题库附带答案详解
- 2025下安徽省水利水电勘测设计研究总院股份有限公司校园招聘笔试历年参考题库附带答案详解
- 2025湖南高速工程咨询有限公司招聘劳务派遣员工12人笔试历年参考题库附带答案详解
- 军队文职知识点-医学类-医学基础必背考点
- 胆囊结石中医护理查房
- 产业园运营知识培训课件
- 大学生就业形势与政策
- DB11-T 2008-2022 聚醚型聚氨酯混凝土路面铺装设计与施工技术规范
- 全书电子课件:国际会计准则理论与实务
- 报名表的模板
- 2025关于CCC强制性生产认证咨询委托合同
- 初级养老护理员考评练习题库600题(职校用)
- 经皮椎体成形术患者的护理查房
- 服装CAD知到智慧树章节测试课后答案2024年秋青岛大学
评论
0/150
提交评论