已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
绝密启用前(2020年1月15日15:00-17:00)北碚区高2020届普通高等学校招生第一次诊断性考试数学考试时间:120分钟;分数:150分注意:本试卷包含、两卷。第卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。第卷为非选择题,所有答案必须填在答题卷的相应位置。答案写在试卷上均无效,不予记分。一、选择题1. 要得到函数的图象,只需将函数的图象上所有的点 A. 横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动8个单位长度B. 横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动4个单位长度C. 横坐标缩短到原来的12(纵坐标不变),再向右平行移动4个单位长度D. 横坐标缩短到原来的12(纵坐标不变),再向左平行移动8个单位长度2. 已知集合A=0,1,B=z|z=x+y,xA,yA,则B的子集个数为A. 3B. 4C. 7D. 83. 已知角的终边经过点P(5,12),则sin(32+)的值等于 A. -513B. -1213C. 513D. 12134. 函数f(x)=2x+log2|x|的零点个数为()A. 0B. 1C. 2D. 35. 若f(x)=lg(x2-2ax+1+a)在区间(-,1上递减,则a的取值范围为()A. 1,2)B. 1,2C. 1,+)D. 2,+)6. 若cos=45,是第三象限的角,则1+tan21tan2=()A. 12B. 12C. 2D. 27. 已知函数f(x)=exxmx(e为自然对数的底数,若f(x)0在(0,+)上恒成立,则实数m的取值范围是()A. (,2)B. (,e24)C. (,e)D. (e24,+)8. 非零向量a,b满足;|ab|=|a|,a(ab)=0,则ab与b夹角的大小为()A. 135B. 120C. 60D. 459. 古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段AB分为两线段AC,CB,使得其中较长的一段AC是全长AB与另一段CB的比例中项,即满足ACAB=BCAC=5120.618.后人把这个数称为黄金分割数,把点C称为线段AB的黄金分割点在ABC中,若点P,Q为线段BC的两个黄金分割点,在ABC内任取一点M,则点M落在APQ内的概率为()A. 512B. 52C. 514D. 52210. 在ABC中,AB=3AC=6,tanA=3,点D,E分别是边AB,AC上的点,且DE=3,记ADE,四边形BCED的面积分别为S1,S2,则S1S2的最大值为()A. 14B. 38C. 13D. 51211. 设f(x)是定义在R上的函数,其导函数为,若 1/,f(0)=2018,则不等式exf(x)ex+2017(其中e为自然对数的底数的解集为()A. (,0)(0,+)B. (,0)(2017,+)C. (2017,+)D. (0,+)12. 已知ABC是边长为2的正三角形,点P为平面内一点,且|CP|=3,则PC(PA+PB)的取值范围是()A. 0,12B. 0,32C. 0,6D. 0,3二、填空题13. 已知实数a0,b0,2是8a与2b的等比中项,则1a+2b的最小值是_14. 已知函数,关于x的方程fx=mmR有四个不同的实数解x1,x2,x3,x4,则x1x2x3x4的取值范围为_15. 如图,AB是圆O的直径,C、D是圆O上的点,CBA=60,ABD=45,CD=xOA+yBC,则x+y=_16. 已知点A是以BC为直径的圆O上异于B,C的动点,P为平面ABC外一点,且平面PBC平面ABC,BC=3,PB=22,PC=5,则三棱锥P-ABC外接球的表面积为_三、解答题17. 等比数列an的各项均为正数,2a5,a4,4a6成等差数列,且满足a4=4a32求数列an的通项公式;设bn=an+1(1an)(1an+1),nN,求数列bn的前n项和Sn18. 如图,四棱锥PABCD的底面是矩形,PA平面ABCD,E,F分别是AB,PD的中点,且PA=AD(1)求证:AF/平面PEC;(2)求证:平面PEC平面PCD19. 已知直线l的参数方程为x=1+ty=3+2t(t为参数,曲线C的极坐标方程为sin216cos=0,直线l与曲线C交于A,B两点,点P(1,3),(1)求直线l的普通方程与曲线C的直角坐标方程;(2)求1PA+1PB的值20. 已知函数f(x)=3sin2x+2sin2x.求函数f(x)的单调增区间;将函数f(x)的图象向左平移12个单位,再向下平移1个单位后得到函数g(x)的图象,当x6,3时,求函数g(x)的值域21. 在平面直角坐标系xOy中,已知椭圆x2a2+y2b2=1(ab0)的焦距为2,离心率为22,椭圆的右顶点为A(1)求该椭圆的方程:(2)过点D(2,2)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值22. 如图所示,直角梯形ABCD中,AD/BC,ADAB,AB=BC=2AD=2,四边形EDCF为矩形,CF=3,平面EDCF平面ABCD求证:DF/平面ABE;求平面ABE与平面EFB所成锐二面角的余弦值;在线段DF上是否存在点P,使得直线BP与平面ABE所成角的正弦值为34,若存在,求出线段BP的长,若不存在,请说明理由答案1.【答案】B2.【答案】D故选D3.【答案】C4.【答案】C5.【答案】A6.【答案】A7.【答案】B8.【答案】A9.【答案】B10.【答案】C11.【答案】D12.【答案】A13.【答案】5+2614.【答案】(0,1)15.【答案】3316.【答案】1017.【答案】解:设等比数列an的公比为q0,2a5,a4,4a6成等差数列,2a4=2a5+4a6,2a4=2a4(q+2q2),化为:2q2+q1=0,q0,解得q=12,又满足a4=4a32,a1q3=4(a1q2)2,化为:1=4a1q,解得a1=12,an=(12)n(nN*);)bn=an+1(1an)(1an+1)=2n(2n1)(2n+11)=12n112n+11,nN*,数列bn的前n项和Sn=(1211221)+(12211231)+(12n112n+11)=112n+11,nN*【解析】本题考查了“裂项求和”方法、等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题设等比数列an的公比为q0,由2a5,a4,4a6成等差数列,可得2a4=2a5+4a6,化为:2q2+q1=0,q0,解得q.又满足a4=4a32,化为:1=4a1q,解得a1,可得an;)bn=an+1(1an)(1an+1)=2n(2n1)(2n+11)=12n112n+11,nN*,利用“裂项求和”方法即可得出18.【答案】证明:(1)取PC的中点G,连结FG、EG,FG为CDP的中位线,FG/CD,FG=12CD四边形ABCD为矩形,E为AB的中点,AE/CD,AE=12CDFG=AE,FG/AE,四边形AEGF是平行四边形,AF/EG又EG平面PEC,AF平面PEC,AF/平面PEC;(2)PA=AD,F是PD的中点,AFPD,PA平面ABCD,CD平面ABCD,PACD,又因为CDAD,APAD=A,AP,AD平面APD,CD平面APD,AF平面APD,CDAF,又AFPD,且PDCD=D,PD,CD平面PDC,AF平面PDC,由(1)得EG/AF,EG平面PDC,又EG平面PEC,平面PEC平面PCD【解析】本题主要考查了空间线面平行、面面垂直的判定,考查逻辑推理能力和空间想象能力,属于中档题(1)取PC的中点G,连结FG、EG,AF/EG又EG平面PEC,AF平面PEC,AF/平面PEC;(2)由(1)得EG/AF,只需证明AF平面PDC,即可得到平面PEC平面PCD19.【答案】解:(1)直线l的参数方程为x=1+ty=3+2t(t为参数,消去参数,可得直线l的普通方程y=2x+1,曲线C的极坐标方程为sin216cos=0,即2sin2=16cos,所以曲线C的直角坐标方程为y2=16x;(2)直线l的参数方程改写为为参数,代入y2=16x,得,设A、B对应的参数分别为,则【解析】本题考查三种方程的转化,考查参数方程的运用,属于中档题(1)利用三种方程的转化方法,求直线l的普通方程与曲线C的直角坐标方程即可;(2)直线的参数方程改写为为参数,代入y2=16x,利用参数的几何意义求1|PA|+1|PB|的值20.【答案】解:f(x)=3sin2x+2sin2x=3sin2x+1cos2x=2(32sin2x12cos2x)+1=2sin(2x6)+1由2+2k2x62+2k,kZ,解得6+kx3+k,kZ函数f(x)的单调增区间为6+k,3+k,kZ;将函数f(x)的图象向左平移12个单位,得y=2sin2(x+12)6+1=2sin2x+1,再向下平移1个单位后得到函数g(x)=2sin2x,由x6,3,得2x3,23,sin2x32,1,则函数g(x)的值域为3,2.【解析】本题考查三角函数中的恒等变换应用,考查y=Asin(x+)型函数的图象和性质,属中档题利用倍角公式降幂后再由两角差的正弦公式化简由相位在正弦函数的增区间内求得x的取值范围,可得函数f(x)的单调增区间;由函数的伸缩和平移变换求得g(x)的解析式,结合x的范围求得相位的范围,进一步求得函数g(x)的值域21.【答案】解:(1)由题意可知:椭圆x2a2+y2b2=1(ab0),焦点在x轴上,2c=2,c=1,椭圆的离心率e=ca=22,则a=2,b2=a2c2=1,则椭圆的标准方程:x22+y2=1;(2)证明:设P(x1,y1),Q(x2,y2),A(2,0),当斜率不存在时,x=2与椭圆只有一个交点,不合题意由题意PQ的方程:y=k(x2)2,则联立方程y=k(x2)2x22+y2=1,整理得:(2k2+1)x2(42k2+42k)x+4k2+8k+2=0,由韦达定理可知:x1+x2=42k2+42k2k2+1,x1x2=4k2+8k+22k2+1,则y1+y2=k(x1+x2)22k22=2222k2k2+1,则kAP+kAQ=y1x12+y2x22=y1x2+y2x12(y1+y2)x1x22(x1+x2)+2,由y1x2+y2x1=k(x12)2x2+k(x22)2x1=2kx1x2(2k+2)(x1+x2)=4k2k2+1,kAP+kAQ=y1x2+y2x12(y1+y2)x1x22(x1+x2)+2=4k2k2+122222k2k2+14k2+8k+22k2+1242k2+42k2k2+1+2=1,直线AP,AQ的斜率之和为定值1【解析】本题考查椭圆的简单几何性质,直线与椭圆位置关系,韦达定理及直线的斜率公式,考查计算能力,属于中档题(1)由题意可知2c=2,c=1,离心率e=ca,求得a=2,则b2=a2c2=1,即可求得椭圆的方程;(2)则直线PQ的方程:y=k(x2)2,代入椭圆方程,由韦达定理及直线的斜率公式,分别求得直线AP,AQ的斜率,即可证明直线AP,AQ的斜率之和为定值22.【答案】解:证明:四边形EDCF为矩形,DECD,平面EDCF平面ABCD,平面EDCF平面ABCD=CD,DE平面ABCD由题意,以D为原点,DA所在直线为x轴,DE所在直线为z轴建立空间直角坐标系,如图所示:则A(1,0,0),B(1,2,0),E(0,0,3),F(1,2,3),BE=(1,2,3),AB=(0,2,0),设平面ABE的法向量为n=(x,y,z),x2y+3z=02y=0,y=0,令z=1,则x=3,所以平面ABE的法向量为n=(3,0,1),又DF=(1,2,3),DFn=3+0+3=0,DFn;又DF平面ABE,DF/平面ABE;)BE=(1,2,3),BF=(2,0,3),设平面BEF的法向量为m=(a,b,c),a2b+3c=02a+3c=0,令c=4,则a=23,b=3,则平面BEF的法向量为m=(23,3,4),设平面ABE与平面EFB所成锐二面角为,cos=|mn|m|n|=10312=53131,平面ABE与平面EFB所成锐二面角的余弦值是53131;设DP=DF=(1,2,3)=(,2,3),0,1;P(,2,3),BP=(1,22,3),又平面ABE的法向量为n=(3,0,1),设直线BP与平面ABE所成角为,sin=|cos|=|BPn|BP|n|=|3(1)+3|(1)2+(22)2+(3)22=34,化简得826+1=0,解得=12或=14;当=12时,BP=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江国企招聘-2025年温州永嘉县国有企业面向社会公开招聘工作人员25人历年真题汇编及答案解析(夺冠)
- 中国安能建设集团有限公司2026年度校园招聘历年真题汇编附答案解析
- 2026年投资项目管理师之投资建设项目决策考试题库200道带答案(预热题)
- 四川省第七地质大队关于2025年下半年公开考核招聘工作人员(17人)模拟试卷附答案解析
- 2025江苏省省级机关医院放射科派遣制人员招聘1人参考题库带答案解析
- 2025下半年四川南充临江建设发展集团有限责任公司招聘2人历年真题库附答案解析
- 南充市房地产管理局2025年公开遴选参照管理人员(2人)历年真题汇编附答案解析
- 2025广东深圳市宝安区水田实验学校诚聘初中小学数学教师备考题库带答案解析
- 2025四川宜宾三江新区第一次招聘公立医疗机构合同制专业技术人员20人备考公基题库附答案解析
- 2025广东惠州大亚湾开发区招聘西区街道社区工作者30人历年真题汇编带答案解析
- GB/T 13477.18-2002建筑密封材料试验方法第18部分:剥离粘结性的测定
- 第五章-金融衍生工具市场-货币金融学-蒋先玲课件
- 加拿大育空考察报告 - 副本
- 素描静物中苹果绘画步骤课件
- 消化内镜课件
- 社区妇联换届选举操作手册
- 大学生创业计划书(创新创业课)
- DB32T 3947-2020 明挖现浇隧道混凝土收缩裂缝控制技术规程
- 建筑工程标准工期定额
- 《语言学概论》教案
- 在全市铁路护路联防工作会议上的讲话
评论
0/150
提交评论