第六章:空间解析几何与向量微分.doc_第1页
第六章:空间解析几何与向量微分.doc_第2页
第六章:空间解析几何与向量微分.doc_第3页
第六章:空间解析几何与向量微分.doc_第4页
第六章:空间解析几何与向量微分.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六章:空间解析几何与向量微分本章内容简介在平面解析几何中,通过坐标把平面上的点与一对有序实数对应起来,把平面上的图形和方程对应起来,从而可以用代数方法来研究几何问题,空间解析几何也是按照类似的方法建立起来的。本章知识点1、几种常用的曲线。2、曲面极其方程示例。3、空间曲线(直线)极其方程示例。4、二次曲面示例。6.1 几种常见曲线:下一页上一页 下一页6.1 几种常见曲线:上一页 下一页6.1 几种常见曲线: 上一页 回第一页6.2 曲面方程6.2.1 曲面方程的概念及一般方程如果曲面S与三元方程F(x, y, z)=0 (1)有下述关系:1. 曲面S上任一点的坐标都满足方程(1);2. 不在曲面S上的点的坐标都不满足方程(1),那末,方程(1)就叫做曲面S的方程,而曲面S就叫做方程(1)的图形。6.2.2 平面方程的几种形式一般形式:Ax+By+Cy+D=0,其中A,B,C是平面法向,。点法式方程:。截距式方程:。三点式方程:已知平面过空间三点,则平面方程为1. 几种特殊的曲面方程1. 旋转曲面方程设平面曲线 l : 绕z轴旋转,则旋转曲线方程为 2. 柱面方程母线平行与坐标轴的柱面方程为不完全的三元方程,如F(y, z)=0就表示母线平行与x轴,准线为 的柱面.3. 二次曲面方程(见第七章知识点3)6.3 空间曲线6.3.1 空间曲线一般方程空间曲线可以看作两个曲面的交线。设F(x, y, z)=0 和 G(x, y, z)=0是两个曲面的方程,它们的交线为C如图。因为曲线C上的任何点的坐标应同时满足这两个曲面的方程,所以应满足方程组(1)反过来,如果点M不在曲线C上,那末它不可能同时在两个曲面上,所以它的坐标不满足方程组(1)。因此,曲线C可以用方程组(1)来表示。方程组(1)叫做空间曲线C的一般方程。1. 为空间曲线的一般方程,空间曲线的参数方程为 t为参数.1. 方程组 表示怎样的曲线?方程组中第一个方程表示母线平行于z轴的圆柱面,其准线是xOy面上的圆,圆心在原点O,半径为1。方程组中第二个方程表示一个母线平行于y轴的柱面,由于它的准线是zOx面上的直线,因此它是一个平面。方程组就表示上述平面与圆柱面的交线,如图。2. 方程组 表示怎样的曲线?方程组中第一个方程表示球心在坐标原点O ,半径为a的上半球面。第二个方程表示母线平行于z 轴的圆柱面,它的准线是xOy面上的圆,这圆的圆心在点(a/2,0),半径为a/2。方程组就表示上述半球面与圆柱面的交线,如图。6.3.2 空间曲线在坐标上的投影设空间曲线C的一般方程为由上述方程组消去变量z,x,y后所得的方程分别为:H( x , y )=0 R( y , z )=0 T( x , z )=0表示曲线C在xOy面上的投影,表示曲线C在yOz面上的投影,表示曲线C在xOz面上的投影。例 已知两球面的方程为(a) 和 (b)求它们的交线C在xOy面上的投影方程。解 先求包含交线C而母线平行于z轴的柱面方程。因此要由方程(a) , (b)消去z,为此可先从(a)式减去(b) 式并化简,得到y + z = 1再以z = 1 y 代入方程(a)或(b)即得所求的柱面方程为容易看出,这就是交线C关于xOy面的投影柱面方程,于是两球面的交线在xOy面上的投影方程是注:在重积分和曲线积分的计算中,往往需要确定一个立体或曲面在坐标面上的投影,这时要利用投影柱面和投影曲线。 6.4 二次曲面我们把三元二次方程所表示的曲面叫做二次曲面。为了了解三元方程F (x , y ,z )=0所表示得的曲面的形状,我们通常采用截痕法。即用坐标面和平行于坐标面的平面与曲线相截,考察其交线(即截痕)的形状,然后加以综合,从而了解曲面的全貌。同学们可试用截痕法考察下面的二次曲面。6.4.1 椭球面方程 所表示的曲面叫做椭球面,截痕法演示。6.4.2 抛物面方程 (p 和q 同号)所表示的曲面叫做抛物面,截痕法演示。6.4.3 双曲抛物面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论