




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2017年数学中考压轴题精选1、如图,抛物线yax2bxc经过点A(3,0),B(1,0),C(0,3)(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DEx轴于点E,在y轴上是否存在点M,使得ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由2、如图,已知直线y3x3分别交x轴、y轴于A、B两点,抛物线yx2bxc经过A,B两点,点C是抛物线与x轴的另一个交点(与A点不重合)(1)求抛物线对应的函数解析式;(2)求ABC的面积;(3)在抛物线的对称轴上,是否存在点M,使ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标3、如图,直线yx3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线yax2bxc与x轴的另一个交点为A,顶点为P,且对称轴为直线x2(1)求该抛物线的解析式;(2)连接PB、PC,求PBC的面积;(3)连接AC,在x轴上是否存在一点Q,使得以点P、B、Q为顶点的三角形与ABC相似,若存在,求出点Q的坐标;若不存在,请说明理由4、(2014贵州黔南州)如图,在平面直角坐标系中,顶点为(4,1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3)(1)求此抛物线的解析式(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与C有怎样的位置关系,并给出证明(3)已知点P是抛物线上的一个动点,且位于A、C两点之间,问:当点P运动到什么位置时,PAC的面积最大,并求出此时P点的坐标和PAC的最大面积5、如图,抛物线经过点A(1,0)和点B(5,0),与y轴交于点C(1)求此抛物线的解析式;(2)以点A为圆心,作与直线BC相切的A,求A的半径;(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:PBC的面积是否存在最大值?若存在,求出这个最大值和此时点P的坐标;若不存在,请说明理由6、如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4)点A在DE上,以A为顶点的抛物线过点C,且对称轴x1交x轴于点B连接EC,AC点P,Q为动点,设运动时间为t秒(1)填空:点A坐标为_;抛物线的解析式为_(2)在图中,若点P在线段OC上从点O向点C以1个单位秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位秒的速度运动,当一个点到达终点时,另一个点随之停止运动当t为何值时,PCQ为直角三角形?(3)在图中,若点P在对称轴上从点A开始向点B以1个单位秒的速度运动,过点P作PFAB,交AC于点F,过点F作FGAD于点G,交抛物线于点Q,连接AQ,CQ当t为何值时,ACQ的面积最大?最大值是多少?7、已知ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使DAF60,连接CF(1)如图1,当点D在边BC上时,求证:BDCF;ACCFCD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论ACCFCD是否成立?若不成立,请写出AC、CF、CD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产销售代理及佣金分成合同
- 2025年学历类自考国际经济法概论-企业管理咨询参考题库含答案解析(5卷)
- 2025年学历类自考商务交流(二)-学前教育心理学参考题库含答案解析(5卷)
- 2025年学历类自考公证与律师制度-马克思主义基本原理参考题库含答案解析(5卷)
- 2025年学历类自考公司法-学前儿童发展参考题库含答案解析(5卷)
- 合作发展农产品直销网协议
- 2025年学历类自考互联网数据库-英语(二)参考题库含答案解析(5卷)
- 2025年贵州省黔西南州黔西县英语高三上期末统考模拟试题
- 合作研发软件协议
- 2025年学历类自考专业(计算机网络)计算机网络安全-信息系统开发与管理参考题库含答案解析(5卷)
- 人工智能对会计信息披露的挑战与机遇
- 【人教版】二年级上册《道德与法治》全册教案
- 《应用文写作》中职全套教学课件
- 小学英语开学第一课-课件
- 《第1课 身边的数据》参考课件3
- 《塑料门窗工程技术规程》JGJ103-2008
- OGSM战略规划框架:实现企业目标的系统化方法论
- 污水处理中回收磷资源的研究
- 第2课《树立科学的世界观》第1框《世界的物质性》-【中职专用】《哲学与人生》同步课堂课件
- 一年级看图写话专项练习及范文20篇(可下载打印)
- (正式版)JBT 9229-2024 剪叉式升降工作平台
评论
0/150
提交评论