免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
大题精做13 函数与导数:极值点不可求与构造2019厦门三中已知函数,(1)讨论的极值;(2)若对任意恒成立,求实数的取值范围【答案】(1)当时,无极值;当时,有极大值,无极小值;(2)【解析】(1)依题意,当时,在上单调递增,无极值;当时,当时,在上单调递增;当时,在上单调递减,所以,无极小值综上可知,当时,无极值;当时,有极大值,无极小值(2)原不等式可化为,记,只需,可得当时,所以,在上单调递增,所以当时,不合题意,舍去当时,(i)当时,因为,所以,所以,所以在上单调递减,故当时,符合题意(ii)当时,记,所以,在上单调递减又,所以存在唯一,使得当时,从而,即在上单调递增,所以当时,不符合要求,舍去综上可得,12019黄山一模已知函数,(为自然对数的底数)(1)当时,求曲线在点处的切线方程;(2)证明:当时,不等式成立22019榆林一模已知函数(1)设,求的最大值及相应的值;(2)对任意正数恒有,求的取值范围32019昆明诊断已知函数(1)讨论的单调性;(2)若,证明:1【答案】(1);(2)见解析【解析】(1)由题意知,当时,解得,又,即曲线在点处的切线方程为(2)证明:当时,得,要证明不等式成立,即证成立,即证成立,即证成立,令,易知,由,知在上单调递增,上单调递减,所以成立,即原不等式成立2【答案】(1)当时,取得最大值;(2)【解析】(1),则,的定义域为,当时,;当时,;当时,因此在上是增函数,在上是减函数,故当时,取得最大值(2)由(1)可知,不等式可化为因为,所以(当且仅当取等号),设,则把式可化为,即(对恒成立),令,此函数在上是增函数,所以的最小值为,于是,即3【答案】(1)函数是上的减函数;(2)见解析【解析】(1)函数的定义域为,所以,函数在定义域上单调递减(2)假设先证明不等式,即证,即证,令,则原不等式即为,其中,由(1)知,函数在上单调递减,当时,即,即,所以,当时,下面证明即证,即,令,即证,其中,构造函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GBT 3106-2016 紧固件 螺栓、螺钉和螺柱 公称长度和螺纹长度》专题研究报告
- 粉矿烧结工安全规程模拟考核试卷含答案
- 商品营业员安全检查强化考核试卷含答案
- 塑料模具工岗前设备巡检考核试卷含答案
- 赡养及财产分割协议书
- 2026年北师大版(2022)小学劳动技术一年级上册期末综合测试卷及答案
- 节日促销策略解密
- 教学年度成效分析
- 广东省肇庆市2024-2025学年高三二模化学试卷(含解析)
- 动词不定式(解析版)核心语法重难点专项突破-2026届高考英语一轮复习
- 精神科护理质控管理方案
- 2025中国铁塔股份有限公司招聘738人笔试历年难易错考点试卷带答案解析2套试卷
- 取保候审法律文书模板
- 内镜专业护士培训方案
- 军事体育训练的热身与放松
- 重装开业家电活动方案
- GB/T 9869.3-2025橡胶用硫化仪测定硫化特性第3部分:无转子硫化仪
- 2025-2030中国房地产行业发展趋势与未来投资战略研究报告
- 永久密闭墙施工培训课件
- 贸易安全意识培训课件
- 等级保护测评汇报
评论
0/150
提交评论