四川省凉山州2015-2016学年高一上期末数学试卷含答案解析.doc_第1页
四川省凉山州2015-2016学年高一上期末数学试卷含答案解析.doc_第2页
四川省凉山州2015-2016学年高一上期末数学试卷含答案解析.doc_第3页
四川省凉山州2015-2016学年高一上期末数学试卷含答案解析.doc_第4页
四川省凉山州2015-2016学年高一上期末数学试卷含答案解析.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2015-2016学年四川省凉山州高一(上)期末数学试卷一、选择题:本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一项是符合要求的.1已知全集为自然数集合N,集合A=1,3,5,7,9,B=0,3,6,9,12,则A(UB)=()A3,5,7B1,5,7C1,3,9D1,2,32sin()的值是()ABCD3下列函数中,最小正周期为的是()Ay=cos4xBy=sin2xCD4下列函数中,是奇函数,又是定义域内为减函数的是()Ay=|xBy=Cy=x3Dy=x25函数y=+的值域是()A3B3,1C3,1,1D3,1,1,36的值是()ABC2D27函数的f(x)=log3x8+2x零点一定位于区间()A(1,2)B(2,3)C(3,4)D(5,6)8已知函数y=f(x)+x是偶函数,且f(2)=1,则f(2)=()A1B1C5D59函数f(x)=(x22x3)的单调减区间是()A(3,+)B(1,+)C(,1)D(,1)10要得到函数y=cos()的图象,只需将函数y=sin的图象()A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度11三个数a=0.22,b=log2,c=20.2之间的大小关系是()AacbBbacCabcDbca12已知0,sin=2cos,则2sin2sincos+cos2的值为()ABCD二、填空题:本大题共4小题,每小题4分,共16分.13sin(435)的值等于14已知函数y=f(x+1)定义域是2,3,则y=f(2x1)的定义域是15函数的值域为16化简:(3ab)(ab)(2ab)=三、解答题.:(本题6个小题,共48分).17计算:+log218已知cos(+)=,求sin()的值19记关于x的不等式0的解集为P,不等式|x1|1的解集为Q(1)若a=3,求P;(2)若a0,且QP,求a的取值范围20已知cos(+)=,(0,),求sin(2)的值21要使函数y=1+2x+4xa在x(,1时,y0恒成立,求实数a的取值范围22某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比,已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图)(1)分别写出两种产品的收益和投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大的收益,其最大收益为多少万元?2015-2016学年四川省凉山州高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每个小题给出的四个选项中,只有一项是符合要求的.1已知全集为自然数集合N,集合A=1,3,5,7,9,B=0,3,6,9,12,则A(UB)=()A3,5,7B1,5,7C1,3,9D1,2,3【考点】交、并、补集的混合运算 【专题】计算题;集合思想;定义法;集合【分析】由全集U及B,求出B的补集,找出A与B补集的交集即可【解答】解:全集为自然数集合N,集合A=1,3,5,7,9,B=0,3,6,9,12,则AUB=1,5,7故选:B【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键2sin()的值是()ABCD【考点】运用诱导公式化简求值 【专题】三角函数的求值【分析】原式中的角度变形【解答】解:sin()=sin=sin(3+)=sin(+)=sin=故选:A【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键3下列函数中,最小正周期为的是()Ay=cos4xBy=sin2xCD【考点】三角函数的周期性及其求法 【专题】计算题【分析】分别找出四个选项函数的值,代入周期公式T=中求出各自的周期,即可得到最小正周期为的函数【解答】解:A、y=cos4x的周期T=,本选项错误;B、y=sin2x的周期T=,本选项正确;C、y=sin的周期为T=4,本选项错误;D、y=cos的周期为T=8,本选项错误,则最小正周期为的函数为y=sin2x故选B【点评】此题考查了三角函数的周期性及其求法,熟练掌握三角函数的周期公式是解本题的关键4下列函数中,是奇函数,又是定义域内为减函数的是()Ay=|xBy=Cy=x3Dy=x2【考点】奇偶性与单调性的综合 【专题】函数思想;综合法;函数的性质及应用【分析】根据奇函数图象的对称性,指数函数的图象,反比例函数在定义域上的单调性,奇函数和减函数的定义,便可判断每个选项的正误,从而得出正确选项【解答】解:A.,该函数图象不关于原点对称,不是奇函数;B.在定义域内没有单调性;Cy=x3,显然该函数为奇函数,根据减函数的定义知,在定义域内为减函数,即该选项正确;Dy=x2,该函数为偶函数,不是奇函数故选C【点评】考查指数函数的图象,奇函数的定义,减函数的定义,以及奇函数图象的对称性5函数y=+的值域是()A3B3,1C3,1,1D3,1,1,3【考点】三角函数值的符号;函数的值域 【专题】三角函数的求值【分析】由函数的解析式对x进行分类讨论,分别利用三角函数值的符号化简求值,再求出函数y=+的值域【解答】解:当x是第一象限角时,sinx0、cosx0、tanx0,则y=+=1+1+1=3;当x是第二象限角时,sinx0、cosx0、tanx0,则y=+=111=1;当x是第三象限角时,sinx0、cosx0、tanx0,则y=+=11+1=1;当x是第四象限角时,sinx0、cosx0、tanx0,则y=+=1+11=1;综上可得,函数y=+的值域是1,3,故选:B【点评】本题考查三角函数值的符号,三角函数的值域,以及分类讨论思想6的值是()ABC2D2【考点】二倍角的正切 【专题】计算题;三角函数的求值【分析】利用二倍角的正切公式,即可得出结论【解答】解:=2=2故选:D【点评】本题考查二倍角的正切公式,考查学生的计算能力,比较基础7函数的f(x)=log3x8+2x零点一定位于区间()A(1,2)B(2,3)C(3,4)D(5,6)【考点】函数的零点 【专题】函数的性质及应用【分析】利用根的存在性定理分别判断,在区间端点符合是否相反即可【解答】解:函数f(x)=log3x8+2x为增函数,f(3)=log338+23=10,f(4)=log348+24=log3410,函数在(3,4)内存在零点故选:C【点评】本题主要考查函数零点的判断,利用根的存在性定理是解决此类问题的基本方法8已知函数y=f(x)+x是偶函数,且f(2)=1,则f(2)=()A1B1C5D5【考点】函数奇偶性的性质;抽象函数及其应用 【专题】函数的性质及应用【分析】根据函数y=f(x)+x是偶函数,可知f(2)+(2)=f(2)+2,而f(2)=1,从而可求出f(2)的值【解答】解:令y=g(x)=f(x)+x,f(2)=1,g(2)=f(2)+2=1+2=3,函数g(x)=f(x)+x是偶函数,g(2)=3=f(2)+(2),解得f(2)=5故选D【点评】本题主要考查了函数的奇偶性,以及抽象函数及其应用,同时考查了转化的思想,属于基础题9函数f(x)=(x22x3)的单调减区间是()A(3,+)B(1,+)C(,1)D(,1)【考点】复合函数的单调性 【专题】计算题【分析】根据函数f(x)=(x22x3)的解析式,根据对数的真数部分必须为正,我们可以求出函数的定义域,在各个区间上分类讨论复合函数f(x)=(x22x3)的单调性,即可得到函数f(x)=(x22x3)的单调减区间【解答】解:要使函数f(x)=(x22x3)的解析式有意义x22x30解得x1,或x3当x(,1)时,内函数为减函数,外函数也为减函数,则复合函数f(x)=(x22x3)为增函数;当x(3,+)时,内函数为增函数,外函数为减函数,则复合函数f(x)=(x22x3)为减函数;故函数f(x)=(x22x3)的单调减区间是(3,+)故选A【点评】本题考查的知识点是复合函数的单调性,其中复合函数单调性的确定原则“同增异减”是解答问题的关键,但解题中易忽略函数的定义域而错选B10要得到函数y=cos()的图象,只需将函数y=sin的图象()A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度【考点】函数y=Asin(x+)的图象变换 【专题】常规题型【分析】先根据诱导公式进行化简,再由左加右减上加下减的原则可确定函数到的路线,即可得到选项【解答】解:=,只需将函数的图象,向左平移个单位长度得到函数=的图象故选A【点评】本题主要考查三角函数的平移三角函数的平移原则为左加右减上加下减注意诱导公式的应用11三个数a=0.22,b=log2,c=20.2之间的大小关系是()AacbBbacCabcDbca【考点】对数值大小的比较 【专题】函数的性质及应用【分析】利用对数函数的单调性即可得出【解答】解:0a=0.221,b=log20,c=20.21,bac故选:B【点评】本题考查了对数函数的单调性,属于基础题12已知0,sin=2cos,则2sin2sincos+cos2的值为()ABCD【考点】三角函数的化简求值 【专题】计算题;规律型;函数思想;三角函数的求值【分析】利用同角三角函数的基本关系式,化简所求的表达式为正切函数的形式,然后求解即可【解答】解:0,sin=2cos,tan=2,2sin2sincos+cos2=故选:D【点评】本题考查同角三角函数的基本关系式的应用,三角函数的化简求值,考查计算能力二、填空题:本大题共4小题,每小题4分,共16分.13sin(435)的值等于【考点】两角和与差的正弦函数;运用诱导公式化简求值 【专题】计算题;规律型;函数思想;三角函数的求值【分析】直接利用诱导公式化简求解即可【解答】解:sin(435)=sin(75)=sin(30+45)=sin30cos45cos30sin45=故答案为:【点评】本题考查诱导公式以及两角和的正弦函数,考查计算能力14已知函数y=f(x+1)定义域是2,3,则y=f(2x1)的定义域是【考点】函数的定义域及其求法 【专题】计算题【分析】利用函数的定义域是自变量的取值范围,同一法则f对括号的范围要求一致;先求出f(x)的定义域;再求出f(2x1)的定义域【解答】解:y=f(x+1)定义域是2,3,1x+14,f(x)的定义域是1,4,令12x14,解得0x,故答案为:【点评】本题考查知f(ax+b)的定义域求f(x)的定义域只要求ax+b的值域即可、知f(x)的定义域为c,d求f(ax+b)的定义域只要解不等式cax+bd的解集即可15函数的值域为(1,2)【考点】函数的值域 【专题】函数的性质及应用【分析】分析出x0时,函数为增函数,结合反比例型函数的图象和性质,可得答案【解答】解:故x0时,函数为增函数由x=0时,f(0)=1,x趋于+时,f(x)趋于2故函数的值域为(1,2)故答案为:(1,2)【点评】本题考查的知识点是函数的值域,其中分析出函数的单调性是解答的关键16化简:(3ab)(ab)(2ab)=【考点】有理数指数幂的化简求值 【专题】计算题;转化思想;综合法;函数的性质及应用【分析】利用有理数指数幂运算法则求解【解答】解:(3ab)(ab)(2ab)=故答案为:【点评】本题考查有理数指数幂化简求值,是基础题,解题时要认真审题,注意有理数性质、运算法则的合理运用三、解答题.:(本题6个小题,共48分).17计算:+log2【考点】对数的运算性质 【专题】计算题;函数思想;函数的性质及应用【分析】直接利用对数运算法则化简求解即可【解答】解:+log2=log252+log2=log252log25=2【点评】本题考查对数运算法则的应用,是基础题18已知cos(+)=,求sin()的值【考点】运用诱导公式化简求值;同角三角函数间的基本关系 【专题】计算题;规律型;转化思想;三角函数的求值【分析】原式中的角度变形后,利用诱导公式化简,将已知等式代入计算即可求出值【解答】解:cos(+)=,sin()=sin(+)=cos(+)=,故答案为:【点评】此题考查了运用诱导公式化简求值,以及同角三角函数间的基本关系,熟练掌握诱导公式是解本题的关键19记关于x的不等式0的解集为P,不等式|x1|1的解集为Q(1)若a=3,求P;(2)若a0,且QP,求a的取值范围【考点】集合的包含关系判断及应用;其他不等式的解法;绝对值不等式的解法 【专题】函数思想;综合法;不等式的解法及应用【分析】(1)把a=3代入不等式解集合P;(2)根据QP,求正数a的取值范围【解答】解:(1)当a=3时,由0,得P=(1,3)4分(2)由|x1|1,得:Q=x|0x26分由a0,得P=(1,a),8分又QP,所以a2,即a的取值范围是(2,+)10分【点评】本题主要考查不等式的解法和集合间的关系20已知cos(+)=,(0,),求sin(2)的值【考点】两角和与差的正弦函数;两角和与差的余弦函数 【专题】函数思想;整体思想;综合法;三角函数的求值【分析】由二倍角公式和同角三角函数基本关系可得cos2和sin2,代入sin(2)=sin2cos2,计算可得【解答】解:cos(+)=,(0,),sin(+)=,sin(2+)=2sin(+)cos(+)=,由诱导公式可得cos2=sin(2+)=,同理可得sin2=cos(2+)=sin2(+)cos2(+)=sin(2)=sin2cos2=【点评】本题考查两角和与差的三角函数公式,涉及二倍角公式和同角三角函数基本关系,属中档题21要使函数y=1+2x+4xa在x(,1时,y0恒成立,求实数a的取值范围【考点】函数恒成立问题 【专题】转化思想;分析法;函数的性质及应用;不等式的解法及应用【分析】由题意,得1+2x+4xa0在x(,1上恒成立,即a在x(,1上恒成立运用指数函数的性质,结合二次函数的值域求法,可得最大值,进而得到a的范围【解答】解:由题意,得1+2x+4xa0在x(,1上恒成立,即a在x(,1上恒成立又=()2x()x=()x+2+,当x(,1时,()x2,+),(2+)2+=6,a6即a的取值范围是(6,+)【点评】本题考查指数函数的性质和应用,将不等式恒成立问题转化为求函数值域问题是解决这类问题常用的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论