




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
如何获取更多的利润 例1 某商场以每件45元的价钱购进一种服装,根据试销得知,这种服装每天的销量T(件)与每件的销售价x(元件)可以看报是一次函数:T3x207(45x69) (1)写出该商场卖这种服装每天的销售利润y与每件的销售价x之间的函数关系式(每天的销售利润是指卖出服装的销售价与购过价的差)。 (2)通过对所得出函数关系式配方,指出商场要想每天获得最大的销售利润,每件的销售价定为多少最为合适?最大销售利润是多少? 分析:每天总销售价为Tx,即(3x207)x,每天销售的T件服装的进价为45T,即45(3x207),而总销售价与总进价的差值即为所获得的利润,而对于第(2)小题应将已得的二次函数配方,画出其函数图像,结合其自变量的取值范围确定最佳售价。 解:(1)由题意得: Y(3x207)x45(3x207) (3x207)(x45)(45x69) (2)由(1)知 y(3x207)( x45) 3(x2114x3105) 3(57)2 432(45x69) 由图像知开口向下,存在最大值,且455769。当x57时 Ymax432 亲爱的同学,若请你帮该商场决策,你知道每件售价是多少最为合适吗? 评述:本题显然是一道在实际生活中可以碰得到的实际问题,而且也确实可以使用我们学过的知识提供一定程度的参考,不过本题可以作一些延伸: 1本题为什么每件商品的售价被限定在45元与69元之间呢? 2该服装的售价可以超过69元吗? 3该函数的图像还可以向两端延伸吗? 例2 共产品每件的成本价是120元,试销阶段中每件产品的销售价x(元)与产品的月销售量y(件)之间的关系如下表:x(元)130150165y(件)705035 若月销售量y是销售价x的一次函数,要获得最大销售利润,每件产品的销售应为多少元?此时每日的销售利润是多少? (销售利润销售价成本价) 分析:从传统的函数应用题拓展到有关营销决策、统计评估、生产、生活等时代气息浓厚的应用问题,形式多样,涉及的知识点比较广,且须注意知识的有机的融合,是近几年中考函数类应用性试题出现的变化和特点。该题涉及一次函数、二次函数。建立二次函数需要领会题意,并在此基础上求函数的最值。以销售为数学模型的函数应用题,既考查了学生的知识,又考查了学生的能力。 “销售利润销售价成本价”这是题目给出的式子,因此每件产品的销售利润与销售价、成本价有关。每日的销售利润应是每日销售量y(件)与每件产品销售利润的积。这是解决此题的关键,也是营销问题中的常识。 以表格形式给出了x(元)与y(件)的对应关系,并进而指出销售量y是销售价x的一次函数,为用待定系数法求解析式提供了可行性与新颖性。 在分析与综合的基础上,每日的销售利润应是y(x的一次函数)与每件产品销售利润(x的一次函数)的积,实质为x的二次函数,于是求函数的最值,就是求日最大利润的问题了。 在实际问题中自变量的取值范围必须符合题意。例如,销售价x元一般不能低于成本价,否则要亏本,更无从谈利润;销售量只能是非负数等。 解:设ykxb,当x130时,y70;当x150时,y50,得方程组:解得: yx200 设每日销售利润为Z元,每件产品的销售利润是(x120)元,于是当时, 即当每件产品的销售价定为160元时,每日的销售利润最大,最大利润为1600元。 例3 某剧院设有1000个座位,门票每张3元可达客满,据长期的营业进行市场估计,若每张票价提高x元,将有200x张门票不能售出。 (1)求提价后每场电影的票房收入y(元)与票价提高量x(元)之间的函数关系式和自变量x的取值范围。 (2)若你是经理,你认为电影院应该怎样决策(提价还是不提价),若提价,提价多少为宜? 分析:若提价x元后,则每张票价变为(x3)元,出售的门票总数为:(1000200x)张,则票房的收入变为:(x3)(1000200x)。 至于电影院到底应该怎样决策,显然票房的收入y是提高的价x的二次函数,可以对其进行配方,进而求出最高的提价。 解:(1)由题意知: 又 x的取值范围是: (2) 又当时,。 电影院应每张门票提价1元为宜。 接下来我们再来看一看1998年河北省的一道中考题。亲爱的同学,你能试着顺利地完成它吗? 例4 某工厂现有甲种原料360千克、乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件。已知生产一件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。 (1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你给设计出来。 (2)设生产A、B两种产品获总利润为y(元),其中一种的生产件数为x,试写出y与x元间的函数关系式,并利用函数的性质说出(1)中哪种生产方案获总利润最大?最大利润是多少? 分析:本题是生产经营决策问题。在市场经济竞争十分激烈的今天,帮助学生学会比较,学会挥优决策,是素质教育的要求,也是近年中考的热门题型。本题所涉及的知识点有:不等式(组)、一次函数。解决这类问题的关键是,建立相应的数学模型。 (1)A、B两种产品的生产件数,受总件数50和所需两种原料库存量的制约。所以可由此得出不等组,从而确立A、B两种产品生产件数的范围,通过进一步讨论可选择其生产方案。 (2)列出总利润与产品生产数量之间的函数关系,根据函数的增减性质,就可以解决本题。 解:(1)设安排生产A种产品。件,则生产B件产品(50x)件。依题意,得 解之,得 x为整数,x只能取30,31,32。 相应的(50x)的组为20 19,18。 所以生产的方案有三种: 第一种:生产A种产品30件,B种产品20件;。 第二种:生产A种产品31件,B种产品19件;。 第三种:生产A种产品32件,B种产品18件。 (2)设生产A种产品件数为x,则生产B种产品的件数为50x。 依题意,得 其中x只能取30 、31、32, 此一次函数中y随x的增大而减小。当x30时,y的值最大。 故按第一种方案安排生产,获总利润最大,最大利润为:500306000045000元。 例5 某工厂计划出售一种产品,固定成本为2000000元,球台生产成本为3000元,销售收入为5000元。求总产量x对总成本Q、单位成本P、销售收入R以及利润L的函数关系,并作出简要分析。 解:总成本与总产量的关系 Q20000003000x, 单位成本与总产量的关系 销售收入与总产量的关系:R5000x。 利润与总产量的关系。 分析:从利润关系式可见,欲求较大的利润,应增加产量(在不考虑销售的情况下),若x1000,则要亏损;若x1000,则利润为零;若x1000,则可盈利。这一点也可以从上面的图像中看出,两条直线的交点就是平衡点。 从单位成本与总产量呈反比例的关系可见,为了降低成本,应增加产量,这样才能降低成本,形成规模效益。 例6 今拟建一排4门的猪舍(如图),由于材料的限制,围墙和墙的总长度只能造p米,问x为多少时,猪舍面积最大?当米时,猪舍面积最大。答:米时,猪舍面积最大。说明:本题列式的关键,在于找出长方形的长和宽。对于求极值,是否采用配方法,则可以根据自己的习惯,本题所用的配方法是解决此类问题的通法。 现代生活中,信息显得十分重要,而报纸作为大众传媒的一种,是一种传递信息的重要载体。正因如此,我们很多人都有抽空着报纸的习惯。下面我们就来研究一下报摊卖报的问题,请你帮助业主设计一下最佳办法。 例7 某市一家报摊从报社买进晚报的价格是每份0.12元,卖出的价格是每份0.20元,卖不掉的以每份0.04元退回报社,在一个月(30天)里,有20天每天可销售400份,其余的10天仅售250份。但每天从报社买的份数必须相同,他应每天从报社购多少份,才能使每月所获利润最大?最大利润是多少? 分析:本题应通过“售报收入”减去“退报亏损”构造等式,从而解决问题。 解:设每天从报社购进x份(),每月售出(20x10250)份,退回10(x250)份,由于卖出获利,退回亏损均为0.08元,则 y0.08(202500) 0.08(x250)100.8400 这显然是一个k0的一次函数,函数值y随着自变量x的增大而增大的,所以 当x400时, ymax720(元)。 答:应每天从报社购400份,才能使每月获利润最大,最大利润是720元。 说明:此题是一道十分典型的应用题。它适用于卖报、卖书、卖书刊。随着数字的变化,可编撰成一道道试题。但是解法却是不变的,应注意此题的解法。 例8 某房地产公司要在荒地ABCDE(如图)上画出一块长方形地面(不改变方向),建造一幢8层楼公寓。问如何设计才能使公寓占地面积最大?并求出最大面积(精确到 1m2)。 分析:在线段AB上任取一点P,分别向CD、DE作垂线,即可保持原来方位,画得一块长方形土地。显然,土地面积决定于P在AB上的位置。 解:建立如图所示的坐标系,则AB的方程为过A(0,20)、B(30,0)则的一条直线。设直线 AB的方程为y kab则又因为A、B两点在直线上,。由于P点在直线上,故可得P点的坐标为( P点坐标满足函数的解析式),则长方形的面积为:化简得:对函数的解析式进行配方得当时,。 说明:由此题可见,公寓占地面积与楼房层数无关,并非所有信息都是有用的,这也是应用题与通常题目的一个重要区别。 例9 某房屋开发公司用100万元购得一块土地,该地可以建造每层1000平方米的楼房,楼房的总建筑费用与建筑高度有关,楼房升高一层,整幢楼房每平方米建筑费用平均提高5,已知建筑5层楼时,每平方米的建筑费用为400元,为了使该楼每平方米的平均综合费用最省(建筑费用与购地费用之和),公司应把楼建成几层? 解:设该楼建成x层,则根据题意得每平方米的购地费用为:(元) 每平方米的建筑费用为:400400(x5)5(元),所以每平方米的平均综合费用为:即得含费用最少为 可见公司应该把楼房建成7层。 上面的例子是关于建造楼房的问题,在生活中,安居工程确实是老百姓比较关心的问题之一。这一点就是生活在校园内的同学们也有所耳闻。有多少家梦想住人宽广静适的套房啊!下面我们就来研究一下一道关于单位职工住房公积金的问题。 例10 某单位决定位公房的职工必须按基本工资高低交纳建房公积金,办法如下:每月工资数公积金100元以下不交纳100200元交纳超过100元部分的5200300元100200元部分交纳5,200300元部分交10300以上100200元部分交纳5,200300元部分交10300元以上部分交纳15 设职工每月工资为x元,交纳公积金后实得数为y元,求y与x之间的关系式,并画出图像。 解:当0x100时,yx 当100x200时 y100(x100)(15)0.95x5 当200x300时 y100100(15)(x200)(110)=0.9x15 当时 y100100(15)100(110)(x300)(115) 0.85x30 说明:此题系分段函数,其对x的取值范围的讨论具有典型性,即应本着既不重复,也不遗漏的原则。凡关于一些保险费的交纳等问题也可仿上类似地求解。 某生产队有60米长的一段篱笆,现用来围一个矩形的苗圃,一面可以利用一条小溪作天然屏障,问应怎样围法,可使苗圃面积最大?分析:此题可利用长和宽的关系,建立函数,设法求出最大值。解法一:配方法设矩形宽是x,则矩形的长为令苗圃的面积为y,则当时,。解法二:极值定理法由解法1得:答:苗圃长30米,宽15米时,最大面积为450米。说明:这类面积解法都是常规的解法,但
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租赁合同设计方案
- 长尾医疗市场在2025年医保支付改革中的机遇与挑战报告
- 2025年特色小镇特色小镇生态环保设施资金申请项目评估报告
- 高考录取大学专业协议书
- 花草绿化管理合同协议书
- 济南救护车采购合同范本
- 签定珠宝展活动合同协议
- 电商供应商合同协议模板
- 自愿现金赠与协议书模板
- 网约车替班司机合同范本
- 反渗透设计计算及ROSA模拟课件
- 负压吸引器的使用课件
- 食品安全员考试题库带答案
- DB37-T 3776-2020 社区居家养老服务质量评估规范-(高清版)
- 每日防火巡查情况记录表【范本模板】
- 水利工程管理单位定岗标准(试点)
- 妇幼保健院高危儿童管理方案
- GB∕T 16895.21-2020 低压电气装置 第4-41部分:安全防护 电击防护
- 实验室生物安全手册(完整版)资料
- Soul app用户体验分析市场调研分析报告PPT模板
- 《工程项目成本管控与核算》PPT讲义
评论
0/150
提交评论