patent premium我的资源Regression and matching_第1页
patent premium我的资源Regression and matching_第2页
patent premium我的资源Regression and matching_第3页
patent premium我的资源Regression and matching_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1. Causes of different estimates by regression and matching method1)Misspecification of model ( assumptions of linearity and constant treatment effect in regression)Two methods estimate the ATT effect under different assumptions. Regression model estimates the average treatment effect assuming that the treatment effect is constant across subpopulation defined by the covariate values (Engelhardt, H., et al., 2009, p.217). Therefore, when the treatment effect is a non-constant function of the covariates, the regression model and the matching approach can achieve different estimates of the treatment effect even if each method produces unbiased estimates.Another big difference is that regression controls for those characteristics in a linear fashion. Matching allows researchers and policymakers to avoid often arbitrary assumptions about the functional form. Again, if model is not well specified, the estimates can be inconsistent (Engelhardt, H., et al., 2009, p.216).2)Data is imbalanced when using regression.When data in the treated and control groups have different multivariate distributions of the covariates, the fitted regression involves extrapolations (Engelhardt, H., et al., 2009, p.216). (后面截图的slides详细说明了该问题,可以使用matching来改进regression的结果)3) Missing confounders and other factors.Both the regression and matching approaches produce consistent estimates of the treatment effect only when we have controlled for all confounding covariates (Engelhardt, H., et al., 2009, p.217) (这一点我们能否改善?现在把能想到的covariates都已经加进来了).2. Possible solution: Run regression on matched dataset.“Its not matching or regression, its matching and regression. Matching is a way to discard some data so that the regression model can fit better.” (Andrew, 2014)我们存在的问题不是treatment的main effect结果不一致,而是moderating effect不一致,没有查到这方面的讨论。因为用matching的方法做moderating effect的文章本身就不多,文章里也没有出现matching结果与regression结果的对比。我建议再尝试一下先将数据进行matching,然后再跑回归的方法(这也是一种常用的处理方法),如果结果能支持的话这样既解决了counterfactual的问题,解释调节效应也比较规范。可参考下列资料:Source: Stuart, E, 2011Rubin (2001) argues that If any of these conditions is not satisfied, the differences between the distributions of covariates in the two groups must be regarded as substantial, and regression adjustment will be unreliable and cannot be trusted.3. References:Andew. (2014) /2014/06/22/matching-regression-matching-regression/.Engelhardt, H., et al. (2009). Causal Analysis in Population Studies: Concepts, Methods, Applications, Springer Netherlands.Rubin, D. B. (2001). Using propensity scores to help design observational studies: application to the tobacco litigation. Health Services and Outcomes Research Methodology, 2(3), 169-188.Stuart, E. (20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论