高中公式集锦.doc_第1页
高中公式集锦.doc_第2页
高中公式集锦.doc_第3页
高中公式集锦.doc_第4页
高中公式集锦.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

三角函数1. 倒数关系:tan cot1 sin csc1 cos sec12. 商的关系:sin/costansec/csccos/sincotcsc/sec3. 两角和与差的三角函数公式:sin()sincoscossinsin()sincoscossincos()coscossinsincos()coscossinsin tantantan()_ 1tan tan tantantan()_ 1tan tan4. 二倍角的正弦、余弦和正切公式:sin22sincoscos2cos2sin22cos2112sin2 2tantan2_ 1tan25. 化asin bcos为一个角的一个三角函数的形式(辅助角的三角函数的公式)6. 三角函数的降幂公式 导数公式C=0 C为常数x=1 (xn)=n*xn-1 (sinx)=cosx(cosx)=-sinx(ex)= ex(lnx)=1 x / (u+v)=u+v(u-v)=u-v(uv)=u *v+u *v(u/v)=(uv-uv)/v2(一)椭圆 定义与推论1、定义1的的认知设M为椭圆上任意一点, 分别为椭圆两焦点, 分别为椭圆长轴端点,则有(1)明朗的等量关系: (解决双焦点半径问题的首选公式)(2)隐蔽的不等关系: ,(寻求某些基本量取值范围时建立不等式的基本依据)2、定义2的推论根据椭圆第二定义,设 为椭圆 上任意一点, 分别为椭圆左、右焦点,则有: (d1为点M到左准线l1的距离) (d2为点M到右准线l2的距离)由此导出椭圆的焦点半径公式: 标准方程与几何性质1、 椭圆的标准方程中心在原点,焦点在x轴上的椭圆标准方程 中心在原点,焦点在y轴上的椭圆标准方程 (1)标准方程、中的a、b、c具有相同的意义与相同的联系: (2)标准方程、统一形式: 2、椭圆 的几何性质(1)范围: (有界曲线)(2)对称性:关于x轴、y轴及原点对称(两轴一中心,椭圆的共性)(3)顶点与轴长:顶点 ,长轴2a,短轴2b(由此赋予a、b名称与几何意义) (4)离心率: 刻画椭圆的扁平程度(5)准线:左焦点 对应的左准线 右焦点 对应的右准线 椭圆共性:两准线垂直于长轴;两准线之间的距离为 ;中心到准线的距离为 ;焦点到相应准线的距离为 . 挖掘与引申1、具特殊联系的椭圆的方程(1)共焦距的椭圆的方程 且 (2)同离心率的椭圆的方程 且 2、弦长公式:设斜率为k的直线l与椭圆交于不同两点 ,则 ;或 。(二)双曲线、定义与推论2、 1定义1的认知设M为双曲线上任意一点, 分别为双曲线两焦点, 分别为双曲线实轴端点,则有:(1)明朗的等量关系: (解决双焦点半径问题的首选公式)(2)隐蔽的不等关系: , (寻求某些基本量的取值范围时建立不等式的依据)2定义2的推论设 为双曲线 上任意上点, 分别为双曲线左、右焦点,则有 ,其中, 为焦点 到相应准线li的距离 推论:焦点半径公式当点M在双曲线右支上时, ;当点M在双曲线左支上时, 。、标准方程与几何性质3双曲线的标准方程3、 中心在原点,焦点在x轴上的双曲线标准方程为 中心在原点,焦点在y轴上的双曲线标准方程为 (1)标准方程、中的a、b、c具有相同的意义与相同的联系: (2)标准方程、的统一形式: 或: (3)椭圆与双曲线标准方程的统一形式: 4双曲线 的几何性质(1)范围: (2)对称性:关于x轴、y轴及原点对称(两轴一中心)(3)顶点与轴长:顶点(由此赋予a,b名称与几何意义)(4)离心率: (5)准线:左焦点 对应的左准线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论