《模糊滑模控制》PPT课件_第1页
《模糊滑模控制》PPT课件_第2页
《模糊滑模控制》PPT课件_第3页
《模糊滑模控制》PPT课件_第4页
《模糊滑模控制》PPT课件_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Fuzzyarithmeticbasedreliabilityallocationapproachduringearlydesignanddevelopment初期阶段的设计和发展中基于模糊算法的可靠度分配方法,V.Sriramdas,S.K.Chaturvedi,H.Gargama,1.Introduction2.Factorsbasedconventionalreliabilityallocationmethod3.Fuzzynumbersandarithmetic4.Themethodology5.Illustrativeexample6.Conclusions,1.IntroductionReliabilityallocationisanimportantanditerativetaskduringthedesignanddevelopmentactivitiesofanyengineeringsystem.Itisalsodifficulttaskbecauseoftheobscuredandincompletedesigndetailsandanumberoffactorshavetoconsiderindesignprocess.Duringthedesignphaseofasystemwithaspecifiedtargetreliabilitylevel,thereliabilitylevelsofthesubsystemsaffecttheoverallsystemreliability.Therefore,aproperreliabilityallocationmethodneedstobeadoptedtoallocatethetargetsystemreliabilitytoitsconstituentsubsystemsproportionately.,4,2.Factorsbasedconventionalreliabilityallocationmethod,Inthisallocationmethod,thetargetreliabilitybasedonthereliabilityfactorsisapportionedtosubsystemsforwhichnopredictedreliabilityvaluesareknown.TherelationshipbetweenapportionedreliabilityofithsubsystemRi(子系统可靠度)andtargetsystemreliabilityR*(总系统可靠度)isdefinedwithaweightagefactorwi.,Ri=(R*)wi,(1),whereweightagefactorwi(权重因子)canbeexpressedwithproportionalityfactorZi(比例因子)as:,wi=Zi/Zi,(2),5,2.1.Complexity(复杂度),Thecomplexityfactorvariesfromsubsystemtosubsystemwithinasystemandismeasuredintermsofnumberofactivecomponentsthatasubsystemiscomposedof.Thenumberofcomponentsinasubsystemhasadirectbearingonthereliabilityofthesubsystem.Thus,complexityhasastrongimpactonthereliabilityallocation.Thefailurerateofthesubsystemwithhighcomplexityisgenerallygoingtobehigh.So,thefailurerateisallocatedproportionaltothecomplexityofthesubsystem.Hence,ZiKi,whereKiisthecomplexityfactorfortheitssubsystem.,1.Multiplefunctionalrelationshipswiththeothergroups.2.Numberofcomponentscomprisingsubsystem.,6,2.2.Cost(成本),Foralargesystem,thecostincrementforreliabilityimprovementisrelativelyhigh.Thedemonstrationofahighreliabilityvalueforacostlysystemmaybeextremelyuneconomical.Hence,ZiCoi,whereCoiisthecostfactorfortheitssubsystem.,2.3.State-of-the-art(工艺状态),Whenthecomponenthasbeenavailableforalongtime,itisquitedifficulttofurtherimprovethereliabilityofacomponentevenifthereliabilityisconsiderablylowerthandesired.Hence,Zi1/Si,whereSiisthestate-of-the-artfactorfortheitssubsystem.,7,2.4.Criticality(临界值),Criticalityisanotherveryimportantfactorinreliabilityallocation.Itislogical,higherreliabilitytargetshouldbeallocatedtothefunctionallycriticalsub-systemsandthusZiisproportionaltocriticality.Hence,Zi1/Cri,whereCriisthecriticalityfactorfortheitssubsystem.,2.5.Timeofoperation(运行时间),Theremaybesomesubsystemswhicharerequiredtobeoperatedforaperiodlessthanthemissiontime.So,forthesubsystemswithoperatingtimelessthanthemissiontime,itisonlylogicaltoallocaterelativelylowerreliability.Hence,Zi1/Ti,whereTiisthetimeofoperationfactorfortheithsubsystem,2.6.Maintenance(维护),Acomponentwhichisperiodicallymaintainedoronewhichisregularlymonitoredorcheckedandrepairedasnecessarywillhave,onanaveragehigheravailabilitythanonewhichisnotmaintainedHence,ZiMi,whereMiisthemaintenancefactorfortheitssubsystem.Theprocessofallocationofrelativescalesiscarriedoutasateamexercise,comprisingofexperiencedmembersfromtheeachofthesubsystemidentified.Fromthepreviousdiscussionsinthissection,afterconsiderationofvariousfactors,formulaforproportionalityfactor(Zi)as:,3.Fuzzynumbersandarithmetic,Definition:Afuzzynumberisafuzzysubsetthatisbothconvex,andnormal.Themostcommonlyusedfuzzynumbersaretriangularandtrapezoidalfuzzynumbers,parameterizedby(a,b,c),and(a,b,c,d),respectively,themembershipfunctionsofthesenumbersaredefinedbelow:,Thenthestandardoperationsontrapezoidalfuzzynumbersareexpressedas:,Addition:,Subtraction:,Multiplication:,Division:,Defuzzification(解模糊化)istheunderlyingreasonthatonecannotcomparefuzzynumbersdirectly.Althoughmanyauthorsproposedtheirfavoritemethods,thereisnouniversalconsensus.Eachmethodincludescomputingacrispvalue,tobeusedforcomparison.Thisassignmentofarealvaluetoafuzzynumberiscalleddefuzzification.Itcantakemanyforms,butthemoststandarddefuzzificationisthroughcomputingthecentroid(计算模糊重心).,3.1.Fuzzydivisionbyusinglinearprogramming,Letbetwotrapezoidalfuzzynumbersparameterizedby(l1,c1,c11,r1),and(l2,c2,c22,r2),wherel1andl2,c1andc2,c11andc22,andr1andr2denotesleftendpoints,leftcenterpoints,rightcenterpoints,andrightendpoints,respectively.Theresultingfuzzynumberscanbewrittenasfollows:,Theconstraintsandobjectivefunctionofthelinearprogrammingproblemforthetrapezoidalfuzzydivisionaredefinedasfollows:,Thefirstconstraintisconstructedbasedontheleftspreads.Theleftspreadvalueovercentervalueforshouldbeequaltoorlessthandivisionofthesameratioscalculatedfor,Inasimilarmanner,thesecondconstraintisconstructedasfollows:,Thethirdandfourthconstraintscanbedefinedbasedonthedefinitionoffuzzynumbers.Theleftendpointofafuzzynumbershouldbelessthantheleftcentervalue.Themathematicalexpressionforthethirdconstraintisgivenbelow:,Therightendpointofafuzzynumbershouldbegreaterthantherightcentervalue.Themathematicalexpressionforthefourthconstraintisgivenbelow:,Theobjectivefunctionisgivenbelow:,4.Themethodology,ItcanbeverywellarguedthatitisnoteasytoevaluateallocationfactorsK,Co,Cr,M,TandSinaprecisemanner.SimilarkindofproblemhasbeenobservedinFailureModeEffectandCriticalityAnalysis,whileevaluatingtheriskfactors.Significanteffortshavebeenmadetoevaluateriskfactorsinalinguisticwayusingfuzzylogic.Inthisstudy,similarefforthasbeenmadetoevaluatetheallocationfactorsinlinguisticway,Supposetherearensubsystems,Ui(i=1,.,n)beevaluatedandallocatedbyasystemdesignandanalysisteamconsistingofmmembers,TMj(j=1,.,m).,Lethj(j=1,.,m)betherelativeimportanceweightsofthemteammembers,satisfying,Basedontheseassumptions,thensubsystemscanbeallocatedbyfollowingsteps:,(a)Aggregatetheteammemberssubjectiveopinionsonallocationfactorsfortheithsubsystemfori=1,.,n,as:,(b)Defineandcomputethefuzzyallocationproportionalityfactor(FZ)ofeachsubsystemas,Now,FZofeachsubsystemcanbecomputedbycombiningfuzzymultiplicationanddivision.FuzzymultiplicationhasbeenperformedbyusingEq.(6)andthefuzzydivisionhasbeenperformedbyusinglinerprogramming,whichisexplainedinSection3.1.,(c)DefuzzifytheFZbyusingEq.(8).(d)EvaluatetheweightageofeachsubsystemusingtheEq.(2)bythesolutionoftrapezoidalcentroiddefuzzificationvalues.(e)EvaluatetheallocatereliabilitiesoftheeachsubsystemusingtheEq.(1).,5.Illustrativeexample,Inthissection,weprovideanumericalexampletoillustratethepotentialapplicationsoftheproposedfuzzyallocationmethod.Ateamconsistingofthethreemembersidentifiesfoursubsystemsinatransceiverandneedstoallocatereliabilitytoeachsubsysteminordertoachievetargetreliability.Thetransceiversubsy

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论