高考数学总复习:第8章《平面解析几何》[6]_第1页
高考数学总复习:第8章《平面解析几何》[6]_第2页
高考数学总复习:第8章《平面解析几何》[6]_第3页
高考数学总复习:第8章《平面解析几何》[6]_第4页
高考数学总复习:第8章《平面解析几何》[6]_第5页
已阅读5页,还剩63页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六节双曲线,主干知识梳理一、双曲线的定义平面内与定点F1、F2的距离的等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的,两焦点间的距离叫做双曲线的,差的绝对值,焦点,焦距,二、双曲线的标准方程和几何性质,xa或xa,ya或ya,坐标轴,原点,坐标轴,原点,(a,0),(a,0),(0,a),(0,a),A1A2,2a,B1B2,2b,a,b,5已知F1(0,5),F2(0,5),一曲线上任意一点M满足|MF1|MF2|8,若该曲线的一条渐近线的斜率为k,该曲线的离心率为e,则|k|e_,3直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点,双曲线的定义及标准方程,规律方法1应用双曲线的定义需注意的问题在双曲线的定义中要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点的距离”若定义中的“绝对值”去掉,点的轨迹是双曲线的一支,双曲线的几何性质,直线与双曲线的位置关系,规律方法1解决此类问题的常用方法是设出直线方程或双曲线方程,然后把直线方程和双曲线方程组成方程组,消元后转化成关于x(或y)的一元二次方程利用根与系数的关系,整体代入2与中点有关的问题常用点差法注意根据直线的斜率k与渐近线的斜率的关系来判断直线与双曲线的位置关系,【高手支招】离心率是圆锥曲线的重要几何性质,求解椭圆或者双曲线的离心率的关键是建立一个关于a,b,c的方程(不等式),通过这个方程(不等式)和b与a,c的关系消掉b后,建立a,c之间的方程(不等式),只要能通过这个方程求出即可,不一定具体求出a,c的数值,解析如图所示,设双曲线右焦点为F1,则F1与A重合,坐标为(5,0),则|PF|PF1|2a,|QF|QF1|2a,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论