




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
33 二元一次不等式组与简单的线性规划问题(不作要求)3.4 基本不等式(a0,b0)3.4.1基本不等式的证明学 习 目 标核 心 素 养1.了解基本不等式的证明过程(重点)2.能利用基本不等式证明简单的不等式及比较代数式的大小.3.能利用基本不等式求简单函数的最值(难点)1.通过不等式的证明,培养逻辑推理素养.2.借助基本不等式形式求简单的最值问题,提升数学运算素养.1算术平均数与几何平均数对于正数a,b,我们把称为a,b的算术平均数,称为a,b的几何平均数2基本不等式如果a,b是正数,那么(当且仅当ab时取“”),我们把不等式(a0,b0)称为基本不等式思考:如何证明不等式(a0,b0)?提示ab2()2()22()20,当且仅当ab时,等号成立,ab2,当且仅当ab时,等号成立1不等式a212a中等号成立的条件是()Aa1Ba1Ca1 Da0B当a212a,即(a1)20,即a1时,“”成立2已知a,b(0,1),且ab,下列各式中最大的是()Aa2b2 B2C2ab DabDa,b(0,1),a2a,b2b,a2b2ab,又a2b22ab(ab),2aba2b2ab.又ab2(ab),ab最大3已知ab1,a0,b0,则ab的最小值为()A1B2 C4D8Ba0,b0,ab22,当且仅当ab1时取等号,故ab的最小值为2.4当a,bR时,下列不等关系成立的是_;ab2;a2b22ab;a2b22ab.根据xy,成立的条件判断,知错,只有正确对基本不等式的理解【例1】给出下面三个推导过程:a,b为正实数,22;aR,a0,a24;x,yR,xy0,22.其中正确的推导为()ABC DBa,b为正实数,为正实数,符合基本不等式的条件,故的推导正确aR,a0,不符合基本不等式的条件,a24是错误的由xy0,得,均为负数,但在推导过程中将整体提出负号后,、均变为正数,符合基本不等式的条件,故正确1基本不等式 (a0,b0)反映了两个非负数的和与积之间的关系2对基本不等式的准确掌握要抓住以下两个方面:(1)定理成立的条件是a,b都是非负数(2)“当且仅当”的含义:当ab时,的等号成立,即ab;仅当ab时,的等号成立,即ab.1下列不等式的推导过程正确的是_若x0,则x22.若x0,则x24.若a,bR,则22.中忽视了利用基本不等式时每一项必须为正数这一条件利用基本不等式比较大小【例2】(1)已知a,b(0,),则下列各式中不一定成立的是()Aab2 B.2C.2 D.(2)已知a,b,c是两两不等的实数,则pa2b2c2与qabbcca的大小关系是_(1)D(2)pq(1)由得ab2,A成立;22,B成立;2,C成立;,D不一定成立(2)a,b,c互不相等,a2b22ab,b2c22bc,a2c22ac.2(a2b2c2)2(abbcac)即a2b2c2abbcac.1在理解基本不等式时,要从形式到内含中理解,特别要关注条件2运用基本不等式比较大小时应注意成立的条件,即ab2成立的条件是a0,b0,等号成立的条件是ab;a2b22ab成立的条件是a,bR,等号成立的条件是ab.2如果0ab1,P,Q,M,那么P,Q,M的大小顺序是()APQM BMPQCQMP DMQPB显然,又因为,(由ab,也就是1可得),所以.故MPQ.利用基本不等式证明不等式【例3】已知a,b,c是互不相等的正数,且abc1,求证:9.思路探究: 看到9,想到将“1”换成“abc”,裂项构造基本不等式的形式,用基本不等式证明证明a,b,cR,且abc1,33322232229.当且仅当abc时取等号,9.本例条件不变,求证:8.证明a,b,cR,且abc1,10,10,10,8,当且仅当abc时取等号,不等式成立1条件不等式的证明,要将待证不等式与已知条件结合起来考虑,比如本题通过“1”的代换,将不等式的左边化成齐次式,一方面为使用基本不等式创造条件,另一方面可实现约分与不等式的右边建立联系2先局部运用基本不等式,再利用不等式的性质(注意限制条件),通过相加(乘)合成为符合待证的不等式,既是运用基本不等式时的一种重要技能,也是证明不等式时的一种常用方法3已知a,b,cR,求证:a4b4c4a2b2b2c2c2a2.证明由基本不等式可得a4b4(a2)2(b2)22a2b2,同理,b4c42b2c2,c4a42a2c2,(a4b4)(b4c4)(c4a4)2a2b22b2c22a2c2,从而a4b4c4a2b2b2c2c2a2.4. 已知2ab1,a0,b0,求证:32.证明332,当且仅当,且2ab1,即a,b1时取等号1应用基本不等式时要时刻注意其成立的条件,只有当a0,b0时,才会有.对于“当且仅当ab时,号成立”这句话要从两个方面理解:一方面,当ab时,;另一方面:当时,也有ab.2应用基本不等式证明不等式的关键在于进“拼”“凑”“拆”“合”“放缩”等变形,构造出符合基本不等式的条件结构.1判断正误(1)对任意a,bR,a2b22ab,ab2均成立()(2)若a0,则a22.()(3)若a0,b0,则ab.()答案(1)(2)(3)提示(1)任意a,bR,有a2b22ab成立,当a,b0时,不等式ab2成立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 移动端健康医疗应用开发
- 职教数学复习 第7章简单几何体与立体几何 第34讲简单几何体的三视图 课件
- 甲状腺次全切除术课件
- 天津市河东区2024-2025学年高二下学期7月期末物理试题(含答案)
- 用电安全知识培训课件开场白
- 新解读《GB-T 36041-2018压水堆核电厂安全重要变量监测准则》
- 生药学课件-大黄
- 2024垃圾清理协议合同
- 2024建设用地使用权出租合同(8篇)
- 2025年考研英语(一)阅读理解模拟试卷 真题解析与训练
- 危险性较大的分部分项工程安全监理实施细则
- 《企业的可持续发展》课件
- 咨询服务承揽合同范本
- 施工期间交通导行方案
- 《森林疗养基地建设技术导则》(T-CSF 001-2019)
- 《酒店客户关系管理 》课件-项目三 酒店客户关系管理制度
- 2024年中考英语试题分类汇编
- 2025版高考化学一轮复习第九章有机化合物1甲烷乙烯苯煤石油天然气的综合利用强化训练1含解析新人教版
- 《肿瘤溶解综合征》课件
- 电瓶车以租代购协议书范文范本
- 人教版(2024新版)七年级上册数学第四章 整式的加减 单元测试卷(含答案)
评论
0/150
提交评论