已阅读5页,还剩63页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AdvancedDigitalSignalProcessing(ModernDigitalSignalProcessing)Chapter5Time-FrequencyAnalysisandWaveletTransform,Generalexpression,5.1LinearTransform,Innerproduct,Wave&WaveletTransformWaves,Wavesarenon-compact(infinite)supportfunctions,Non-compactsupportfunction:Thefunctionsextendtoinfinityinbothdirections.,Wavelets,Waveletsarecompact(finite)supportfunctions.Theyvarywithfrequencyaswellasposition,Compactsupportfunction:Thefunctionsareinalimitduration.,Wave&wavelettransform,waves,wavelets,Wavetransform,(wide-sense)wavelettransform,OrthogonaltransformOrthogonalbasisfunctionOrthogonal(orthonormal)transform,Ifc=1,theng(,t)isorthonormalbasisfunction.,Understandingofthe(orthogonal)transformIntuitiveinterpretationoforthogonaltransformForagiveni,Iff(t)isorthogonalwithg(i,t),thenF(i)=0,i.e.thereisnocomponentcorrespondingtothebasisg(i,t)inf(t).Otherwise,thecomponentsoff(t)correspondingtothebasisg(i,t)willcomposeF(i)inspace.Ontheotherhand,thecomponentsoff(t)correspondingtothebasisg(i,t)isorthogonalwithanybasisg(j,t),ijandwillcontributenothingtoF(j).,Decompositioneffect,GeometricinterpretationoforthogonaltransformNon-orthogonaltransform,Theorthogonaltransformoff(t)isaprojectionoff(t)intoaorthogonalbasisspaceformedbyg(i,t),i=1,2,OrthogonalProjection,Non-OrthogonalProjection,Thesamecomponentoff(t)mayprojectintodifferentbases.Redundancywillprobablyexistinthetransformresults.,Fouriertransform(FT),i.e.theFTisanorthonormalwavetransform.,Non-Stationary(Time-Variant)SignalStationary(time-invariant)signal,Non-stationary(time-variant)signal,x1(t)x2(t)x3(t)x4(t),FTofnon-stationary(time-variant)signal,Signalsaredifferent,butspectrumsaresimilar,Deficiencyofwavetransform(e.g.FT),Wavetransformsarenotsuitablefortime-variantsignalsincetheydontincludeposition(time)informationinthetransformresults(e.g.FTanalyzestheglobalfrequencydistributionofasignal,butitcannotcharacterizethelocalbehaviorofthesignal).,BasicIdea,5.2Time-FrequencyAnalysis,InFT,thelocalbehaviorofasignalisnotrepresentedinthesignalsfrequencyspectrum,TheFTisnotthemostproperrepresentationforthetime-variantsignalsorthesignalscontainingtransientorlocalizationcomponents,Time-frequencyanalysis:characterizingthetimeandfrequencyinformationofasignalsimultaneouslyinitsspectrum,ExamplesofTime-FrequencyAnalysis,MainToolsofTime-FrequencyAnalysisShorttimeFouriertransform(STFT)WavelettransformWignerdistribution(WD)Quadrictransform(non-lineartransform)Time-frequencydistributionWiger-Villedistribution(non-stationaryrandomsignal),DefinitionSTFTofcontinuoustimesignalx(t)STFTofdiscretetimesignalx(n),5.3ShortTimeFourierTransform,wherew(t)isarealfinite-widthwindowfunctionwhichslidesalongx(t),wherew(n)isarealfinite-lengthwindowsequencewhichslidesalongx(n),TheresultofSTFTisa2-Dfunctionwhichreflectsthesignalspectrumvariedwithtime.,FTofWindowedx(t),isacompactsupportfunction(wavelet),andTheSTFTis,Wide-sensewavelettransform,Thesupportwidthofthewavelet(i.e.thewidthofthewindow)isconstantforallfrequencycomponents.,TheConflictingRequirementsbetweentheFrequencyResolution&theTimeResolutioninSTFTFrequencyresolutionrequirementThewindowwidthTshouldbewideenoughtogivethedesiredfrequencyresolution.TimeresolutionrequirementThewindowwidthTshouldbenarrowenoughsoasnottoblurthetimedependentevents,i.e.thesignalsegmentincludedinthewindowcanbetreatedasstationaryapproximately.,Partitionoftime-frequencyplaneinSTFT,t,ProblemsofSTFTHeisenberguncertaintyprincipleSTFTisredundantrepresentationNotgoodforcompressionThesameandtthroughttheentireplane!,Wecannotperfectlylocalizeeventsintimeandfrequencysimultaneously!,Multi-ResolutionAnalysis(MRA)BasicideaThehighfrequencycomponentsvaryrapidlyintime.Arelativelyshortsignalsegmentcancharacterizethemproperly,hencearelativelynarrowtimewindowcanbeused(hightimeresolutionandlowfrequencyresolution).Oncontrary,thelowfrequencycomponentsvaryslowlyintimeandarelativelywidetimewindowshouldbeused(highfrequencyresolutionandlowtimeresolution).,Higherfrequency,Morenarrowtimewindow,Lowerfrequency,Widertimewindow,Highertimeresolution,Higherfrequencyresolution,Partitionoftime-frequencyplane,MRADifferenttimeandfrequencyresolutionsareadoptedtothedifferentfrequency(scale)componentsofsignalatsametime,5.4ContinuousWaveletTransform(CWT),DefinitionCWT,whereismother(basis)waveletwhichsatisfies,Scaling&translationofmotherwavelet,whereaisscaling(dilation)parameterandbistranslation(shifting)parameter.isthebasisfunctionofCWT.Itiscalledtheanalysiswavelet.,Scaling(dilation),Translation(shifting),Scalingandtranslation,RepresentingCWTinFrequencyDomain,IfthecentralfrequencyoftheFTofis0,anditsbandwidthisB,thenthecentralfrequencyandbandwidthoftheFTofare0/aandB/arespectively,i.e.,PropertiesofwaveletFrequencyspectrumanalysisabilityIfthewaveletisaband-passfilterwithrelativelynarrowpassband,thenthewaveletwithdifferentacancharacterizethedifferentfrequencycomponentsofasignal.Constantqualityfactor,InverseCWT(ICWT)Admissiblecondition,whereistheFTof,Thesatisfiestheadmissibleconditionisaadmissiblewavelet.,Abasicrestrictionforconstructingamotherwavelet,ICWT,ExamplesofMotherWavelets,PropertiesofCWTLinearityTimeshifting,ScalingMoyaltheorem(innerproducttheorem)EnergyofWT,Reproducingkernelequation,ICWT,Reproducingkernel:thedependencebetween,RedundancyofCWT,Reproducingkernelequation,5.5DiscreteWaveletTransform(DWT),DefinitionDiscretizingoftheScaling&TranslationFactor,mother(basis)wavelet,Basiswithlargerscale,Lowersamplingrate,DWT,:DWTorwaveletseries,Usually,areadopted,then,WaveletFrameRequirementsforDiscreteWaveletBasisCompletenessCancharacterizethex(t)completely?ReversibilityCanx(t)berestoredfromstably?UniversalityWhetheranyx(t)canberepresentedbyalinearcombinationofthewaveletbasis,Completeness,Uniqueness,continuity,Reversibility,Uniqueness,continuity,FrameLetbeaclusteroffunctionsinHilbertspaceH,ifforanyfunction,itisheldthatthenisaframe.Moreover,ifA=B,thenisatightframeand,IfA=B=1,then,henceisasetoforthogonalbasesinHspace.Suchasetofbasesisorthonormalif,Dualframe,wheresatisfies,Restoring,anditiscalledthedualframeof,Forconvenience,whenABbut,itisusuallyapproximatedas,where,IfA=B,then,WaveletframeIfforanyfunctionx(t),thewaveletbasisfunctionsatisfiesthenisawaveletframe.Itsdualwaveletframeis,whichsatisfies,IfA=B,then,or,IfAB,then,and,i.e.isanadmissiblewavelet.,Ifisawaveletframe,thenitmeetsthethreerequirementsfordiscretewaveletbasisproposedbefore,and,DesigningOrthonormalWaveletBasiswithMRAOrthogonalwaveletbasis:removingtheinformationredundancyinthedataaftertransformation,thenisorthogonal,andifC=A,thenisorthonormal.,If,Rep
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机床装调维修工安全技术规程
- 履带吊司机岗前成果转化考核试卷含答案
- 家电生产产品检测员操作能力评优考核试卷含答案
- 矿山买卖居间合同协议书
- 海南省海口市某中学2025-2026学年高三年级上册第一次月考历史试题(含解析)
- 节气文化的传承与创新
- 硕士学习攻略
- 概括探究结果-2025年中考语文非连续性文本阅读答题公式
- 2025煤炭科学技术研究院有限公司高层次人才招聘笔试历年参考题库附带答案详解
- 2025上海铁路国际旅游(集团)有限公司网络运维岗产品营销岗招聘3人笔试历年参考题库附带答案详解
- 2025-2030印度尼西亚卡车行业市场现状供需分析及投资评估规划分析研究报告
- JJG(交通) 133-2023 落锤式弯沉仪
- 新时代中国健康与卫生事业历史成就
- 软装家装设计全案解析
- 烟草证免责协议书
- 安宁疗护国内外发展现状及改进策略
- 学校补课收费协议书
- 《斯大林格勒战役》课件
- 生态环境标准应用 课件 地下水质量标准3
- 设备采购安装方案投标文件(技术方案)
- 注会-会计习题及答案
评论
0/150
提交评论