现代数字信号处理AdvancedDigitalSignalProcessing-ch5wavel_第1页
现代数字信号处理AdvancedDigitalSignalProcessing-ch5wavel_第2页
现代数字信号处理AdvancedDigitalSignalProcessing-ch5wavel_第3页
现代数字信号处理AdvancedDigitalSignalProcessing-ch5wavel_第4页
现代数字信号处理AdvancedDigitalSignalProcessing-ch5wavel_第5页
已阅读5页,还剩63页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AdvancedDigitalSignalProcessing(ModernDigitalSignalProcessing)Chapter5Time-FrequencyAnalysisandWaveletTransform,Generalexpression,5.1LinearTransform,Innerproduct,Wave&WaveletTransformWaves,Wavesarenon-compact(infinite)supportfunctions,Non-compactsupportfunction:Thefunctionsextendtoinfinityinbothdirections.,Wavelets,Waveletsarecompact(finite)supportfunctions.Theyvarywithfrequencyaswellasposition,Compactsupportfunction:Thefunctionsareinalimitduration.,Wave&wavelettransform,waves,wavelets,Wavetransform,(wide-sense)wavelettransform,OrthogonaltransformOrthogonalbasisfunctionOrthogonal(orthonormal)transform,Ifc=1,theng(,t)isorthonormalbasisfunction.,Understandingofthe(orthogonal)transformIntuitiveinterpretationoforthogonaltransformForagiveni,Iff(t)isorthogonalwithg(i,t),thenF(i)=0,i.e.thereisnocomponentcorrespondingtothebasisg(i,t)inf(t).Otherwise,thecomponentsoff(t)correspondingtothebasisg(i,t)willcomposeF(i)inspace.Ontheotherhand,thecomponentsoff(t)correspondingtothebasisg(i,t)isorthogonalwithanybasisg(j,t),ijandwillcontributenothingtoF(j).,Decompositioneffect,GeometricinterpretationoforthogonaltransformNon-orthogonaltransform,Theorthogonaltransformoff(t)isaprojectionoff(t)intoaorthogonalbasisspaceformedbyg(i,t),i=1,2,OrthogonalProjection,Non-OrthogonalProjection,Thesamecomponentoff(t)mayprojectintodifferentbases.Redundancywillprobablyexistinthetransformresults.,Fouriertransform(FT),i.e.theFTisanorthonormalwavetransform.,Non-Stationary(Time-Variant)SignalStationary(time-invariant)signal,Non-stationary(time-variant)signal,x1(t)x2(t)x3(t)x4(t),FTofnon-stationary(time-variant)signal,Signalsaredifferent,butspectrumsaresimilar,Deficiencyofwavetransform(e.g.FT),Wavetransformsarenotsuitablefortime-variantsignalsincetheydontincludeposition(time)informationinthetransformresults(e.g.FTanalyzestheglobalfrequencydistributionofasignal,butitcannotcharacterizethelocalbehaviorofthesignal).,BasicIdea,5.2Time-FrequencyAnalysis,InFT,thelocalbehaviorofasignalisnotrepresentedinthesignalsfrequencyspectrum,TheFTisnotthemostproperrepresentationforthetime-variantsignalsorthesignalscontainingtransientorlocalizationcomponents,Time-frequencyanalysis:characterizingthetimeandfrequencyinformationofasignalsimultaneouslyinitsspectrum,ExamplesofTime-FrequencyAnalysis,MainToolsofTime-FrequencyAnalysisShorttimeFouriertransform(STFT)WavelettransformWignerdistribution(WD)Quadrictransform(non-lineartransform)Time-frequencydistributionWiger-Villedistribution(non-stationaryrandomsignal),DefinitionSTFTofcontinuoustimesignalx(t)STFTofdiscretetimesignalx(n),5.3ShortTimeFourierTransform,wherew(t)isarealfinite-widthwindowfunctionwhichslidesalongx(t),wherew(n)isarealfinite-lengthwindowsequencewhichslidesalongx(n),TheresultofSTFTisa2-Dfunctionwhichreflectsthesignalspectrumvariedwithtime.,FTofWindowedx(t),isacompactsupportfunction(wavelet),andTheSTFTis,Wide-sensewavelettransform,Thesupportwidthofthewavelet(i.e.thewidthofthewindow)isconstantforallfrequencycomponents.,TheConflictingRequirementsbetweentheFrequencyResolution&theTimeResolutioninSTFTFrequencyresolutionrequirementThewindowwidthTshouldbewideenoughtogivethedesiredfrequencyresolution.TimeresolutionrequirementThewindowwidthTshouldbenarrowenoughsoasnottoblurthetimedependentevents,i.e.thesignalsegmentincludedinthewindowcanbetreatedasstationaryapproximately.,Partitionoftime-frequencyplaneinSTFT,t,ProblemsofSTFTHeisenberguncertaintyprincipleSTFTisredundantrepresentationNotgoodforcompressionThesameandtthroughttheentireplane!,Wecannotperfectlylocalizeeventsintimeandfrequencysimultaneously!,Multi-ResolutionAnalysis(MRA)BasicideaThehighfrequencycomponentsvaryrapidlyintime.Arelativelyshortsignalsegmentcancharacterizethemproperly,hencearelativelynarrowtimewindowcanbeused(hightimeresolutionandlowfrequencyresolution).Oncontrary,thelowfrequencycomponentsvaryslowlyintimeandarelativelywidetimewindowshouldbeused(highfrequencyresolutionandlowtimeresolution).,Higherfrequency,Morenarrowtimewindow,Lowerfrequency,Widertimewindow,Highertimeresolution,Higherfrequencyresolution,Partitionoftime-frequencyplane,MRADifferenttimeandfrequencyresolutionsareadoptedtothedifferentfrequency(scale)componentsofsignalatsametime,5.4ContinuousWaveletTransform(CWT),DefinitionCWT,whereismother(basis)waveletwhichsatisfies,Scaling&translationofmotherwavelet,whereaisscaling(dilation)parameterandbistranslation(shifting)parameter.isthebasisfunctionofCWT.Itiscalledtheanalysiswavelet.,Scaling(dilation),Translation(shifting),Scalingandtranslation,RepresentingCWTinFrequencyDomain,IfthecentralfrequencyoftheFTofis0,anditsbandwidthisB,thenthecentralfrequencyandbandwidthoftheFTofare0/aandB/arespectively,i.e.,PropertiesofwaveletFrequencyspectrumanalysisabilityIfthewaveletisaband-passfilterwithrelativelynarrowpassband,thenthewaveletwithdifferentacancharacterizethedifferentfrequencycomponentsofasignal.Constantqualityfactor,InverseCWT(ICWT)Admissiblecondition,whereistheFTof,Thesatisfiestheadmissibleconditionisaadmissiblewavelet.,Abasicrestrictionforconstructingamotherwavelet,ICWT,ExamplesofMotherWavelets,PropertiesofCWTLinearityTimeshifting,ScalingMoyaltheorem(innerproducttheorem)EnergyofWT,Reproducingkernelequation,ICWT,Reproducingkernel:thedependencebetween,RedundancyofCWT,Reproducingkernelequation,5.5DiscreteWaveletTransform(DWT),DefinitionDiscretizingoftheScaling&TranslationFactor,mother(basis)wavelet,Basiswithlargerscale,Lowersamplingrate,DWT,:DWTorwaveletseries,Usually,areadopted,then,WaveletFrameRequirementsforDiscreteWaveletBasisCompletenessCancharacterizethex(t)completely?ReversibilityCanx(t)berestoredfromstably?UniversalityWhetheranyx(t)canberepresentedbyalinearcombinationofthewaveletbasis,Completeness,Uniqueness,continuity,Reversibility,Uniqueness,continuity,FrameLetbeaclusteroffunctionsinHilbertspaceH,ifforanyfunction,itisheldthatthenisaframe.Moreover,ifA=B,thenisatightframeand,IfA=B=1,then,henceisasetoforthogonalbasesinHspace.Suchasetofbasesisorthonormalif,Dualframe,wheresatisfies,Restoring,anditiscalledthedualframeof,Forconvenience,whenABbut,itisusuallyapproximatedas,where,IfA=B,then,WaveletframeIfforanyfunctionx(t),thewaveletbasisfunctionsatisfiesthenisawaveletframe.Itsdualwaveletframeis,whichsatisfies,IfA=B,then,or,IfAB,then,and,i.e.isanadmissiblewavelet.,Ifisawaveletframe,thenitmeetsthethreerequirementsfordiscretewaveletbasisproposedbefore,and,DesigningOrthonormalWaveletBasiswithMRAOrthogonalwaveletbasis:removingtheinformationredundancyinthedataaftertransformation,thenisorthogonal,andifC=A,thenisorthonormal.,If,Rep

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论