已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于空间想象力的含义,林崇德(1991)指出,中学生的空间想象包括对平面几何图形和立体几何图形的运动、变换和位置关系的认识,以及数形结合、代数问题的几何解释等。空间想象能力主要体现在对诸如一维、二维、三维空间中方向、方位、形状、大小等空间概念的理解水平及其几何特征的内化水平上,体现在对简单形体空间位置的想象和变换(平移、旋转以及分割、割补和叠合等)上,以及对抽象的数学式子(算式或代数式等)给与具体几何意义的想象解释或表象能力上。 曹才翰提出,空间想象能力就是以现实世界为背景,对几何表象进行加工改造,创造新的形象的能力。 在王焕勋主编的实用教育大辞典中指出,心理学把人对头脑中已有表象进行改造,创造出新形象的过程称作想象。在中小学数学学科中,空间想象力指的是人们对客观事物的空间形式(包括二维空间、三维空间)进行想象的能力。 孙敦甲(1992)曾开展过中学生空间想象能力发展的研究,结果发现10:(1)中学生空间想象能力的发展过程是从对基本几何形的初步想象到对平面几何图形的深入想象,再到对立体基本几何形的深入想象。(2)在空间能力想象方面,从初二开始,学生的空间想象能力迅速发展,到高二时空间想象能力进入成熟期。 那么,空间观念的含义如何?空间想象能力与空间观念又有怎样的关系呢? NCTM(全美数学教师理事会,1989)11指出,空间观念是对一个人周围环境和实物的直接感知;对于 23 维图形及其性质的领会和感知,图形之间的相互关系和变换图形的效果是空间观念的重要方面。 曹才翰指出,空间想象能力对初中生来说,这种要求太高了,所以义务教育阶段教学大纲中只提出培养学生的空间观念。空间观念至少反映了如下的 5 个方面的要求:(1)由形状简单的实物抽取出空间图形;(2)由空间图形反映出实物;(3)由复杂图形中分解出简单的、基本的图形;(4)由基本的图形中寻找出基本元素及其关系;(5)由文字或符号作出或画出图形。 在王焕勋主编的实用教育大辞典中也指出,在空间知觉的基础上形成的关于物体的形状、大小及其相互位置关系(方位、距离)的表象。小学数学的几何初步知识教学中,让学生感知实物、模型、图形,学生也就形成了空间观念,即获得线、角和简单平面图形和立体图形的形象,能对不太远的物体间的方位、距离和大小有较正确的估计,能从复杂的图形中区分出基本图形。由此可见,空间想象力是在空间观念的基础上形成和发展的。 用一般的发展理论来解释儿童对几何概念的理解,只能对数学教育产生有限的意义。而数学教育学家对空间观念(能力)及其与几何课程关系的研究却才刚刚起步。不论对心理学家还是数学教育家来说,空间观念(能力)都没有一个确切的定义,而在其与几何课程的关系上,Coxford(1978)认为“发展家和干涉主义者(即通常意义上的心理学家和数学教育者)为了获得对空间和几何的发展的深刻认识必须加强合作”,“心理学家必须提供空间几何概念的基本信息而数学教育家必须将它们放在适当位置”。John Del Grande(1990)研究指出,小学生能在与其空间能力相关的几何概念上有很好的表现,因此,必须从直觉和实验活动出发设置适合小学生的几何课程。总之,几何课程在发展学生空间观念(能力)的重要性已是不争的事实,然而,正如 Coxford 指出的那样,应如何把它放在适当位置正是数学教育家或数学工作者当前及未来所应致力研究的。 (三)几何教育的价值和空间观念的培养及其意义 作为数学学科的一个重要的分支,几何的教育价值可以从两个大的方面去考虑,一方面它具有与数学的其他领域同样的教育功能;另一方面,几何的内容的特殊性以及思维方式的特点又决定它具有一些自己独特的教育价值。 大数学家希尔伯特曾说过:“在数学中,象在任何科学研究中那样,有两种倾向。一种是抽象的倾向,即从所研究的错综复杂的材料中提炼出其内在的逻辑关系,并根据这些关系把这些材料作系统的有条理的处理。另一种是直观的倾向,即更直接地掌握所研究的对象,侧重它们之间关系的的意义,也可以说领会它们的生动的形象”。 “就几何方面说,抽象的倾向已经引导到代数几何、黎曼几何和拓扑学等宏伟的系统理论;在这里抽象的思维方法、以及代数性质的符号运算获得广泛的运用。然而,直观在几何中所起的作用却是更大,过去如此,现在还是如此。具体的直观不仅对于研究工作有巨大的价值,对于理解和欣赏几何中的研究结果也是这样。”12 那么,一般的来讲,几何的教育价值体现在哪些方面呢?鲍建生(2000)概括归纳出几何教育价值的六个方面13: (1)几何有利于形成科学世界观和理性精神。 (2)几何有助于培养良好的思维习惯。 (3)几何有助于发展演绎推理和逻辑推理思维能力。 (4)几何是一种理解、描述和联系现实空间的工具。 (5)几何能为各种水平的创造活动提供丰富的素材。 (6)几何可以作为各种抽象数学结构的模型。 李淑文(2006)在其博士论文中归纳概括了一些学者的观点总结了几何的教育价值。这些概括和总结考虑了几何作为一个学科课程领域的较为全面的意义。 那么,几何作为数学的一个分支,其研究内容和方法的特殊性又有哪些特别的11 教育价值呢? 阿蒂亚(MAtiyah)认为,几何是数学中这样的一个部分,其中视觉思维占主导地位,而代数则是数学中有序思维占主导地位的部分。这种区分也许用另一对词刻画更好,即“洞察”对“严格”,两者在真正的数学研究中都起着本质的作用。它们在教育中的意义也是清楚的。我们的目标应是培养学生发展这两种思维模式,过分强调一种而损害另一种是错误的2。 荷兰数学家、数学教育家弗莱登塔尔(Freudenthal,1989)指出,几何是对空间的把握这个空间是儿童生活、呼吸和运动的空间。在这个空间里,儿童必须学会去了解、探索、征服,从而能更好地在其中生活、呼吸和运动。 NCTM(1989)指出,几何有助于我们用一种有序的方式表示和描述我们生活的现实世界,将帮助学生描述和弄清世界的意义。对于学生来说,发展牢固的空间关系的观念,掌握几何的概念和语言,可以较好地为学习数和度量概念做准备,还可以促进其他数学课程的进一步学习。几何的模型提供了一个透视图,从中,学生可以分析和解决问题,而且几何的解释还可以帮助学生形成一个抽象的(符号的)表示,使人更容易理解。 NCTM(2000)进一步指出,空间想象建立和操纵二维和三维物体的心智表征,及从不同角度观察一个物体的能力,是几何思维的重要方面。几何很自然地有助于培养学生的思维和推理能力,中学阶段是学习证明的重要阶段。 因此,关于几何的特点以及由此引来的作为教育内容的几何的特征带给学习者的首先就应该是视觉的、形象的(visual)、直观的,另一面则是推理及证明的逻辑思维能力的培养。 义务教育数学课程标准(2007)这样来概括并解释了几何的教育中三个核心的思想和目标:空间观念(spatial sense)、几何直觉(geometry intuition)、推理能力(reasoning ability)。 空间观念是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;能够想象出空间物体的方位和相互之间的位置关系;根据语言描述或通过想象画出图形等。 直观与推理是“图形与几何”学习中的两个重要方面。几何直观是指利用图形描述几何或者其他数学问题、探索解决问题的思路、预测结果。在许多情况下,借助几何直观可以把复杂的数学问题变得简明、形象。几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,并且贯穿在整个数学学习中。 推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式,因此,与直观一样,推理也贯穿在整个数学学习中。推理一般包括合情推理和演绎推理。合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推测某些结果,是由特殊到一般的过程。演绎推理是从已有的事实(包括定义、公理、定理等)出发,按照规定的法则(包括逻辑和运算)验证结论,是由一般到特殊的过程。在解决问题的过程中,合情推理有助于探索解决问题的思路、发现结论;演绎推理10 小有较正确的估计,能从复杂的图形中区分出基本图形。由此可见,空间想象力是在空间观念的基础上形成和发展的。 用一般的发展理论来解释儿童对几何概念的理解,只能对数学教育产生有限的意义。而数学教育学家对空间观念(能力)及其与几何课程关系的研究却才刚刚起步。不论对心理学家还是数学教育家来说,空间观念(能力)都没有一个确切的定义,而在其与几何课程的关系上,Coxford(1978)认为“发展家和干涉主义者(即通常意义上的心理学家和数学教育者)为了获得对空间和几何的发展的深刻认识必须加强合作”,“心理学家必须提供空间几何概念的基本信息而数学教育家必须将它们放在适当位置”。John Del Grande(1990)研究指出,小学生能在与其空间能力相关的几何概念上有很好的表现,因此,必须从直觉和实验活动出发设置适合小学生的几何课程。总之,几何课程在发展学生空间观念(能力)的重要性已是不争的事实,然而,正如 Coxford 指出的那样,应如何把它放在适当位置正是数学教育家或数学工作者当前及未来所应致力研究的。 (三)几何教育的价值和空间观念的培养及其意义 作为数学学科的一个重要的分支,几何的教育价值可以从两个大的方面去考虑,一方面它具有与数学的其他领域同样的教育功能;另一方面,几何的内容的特殊性以及思维方式的特点又决定它具有一些自己独特的教育价值。 大数学家希尔伯特曾说过:“在数学中,象在任何科学研究中那样,有两种倾向。一种是抽象的倾向,即从所研究的错综复杂的材料中提炼出其内在的逻辑关系,并根据这些关系把这些材料作系统的有条理的处理。另一种是直观的倾向,即更直接地掌握所研究的对象,侧重它们之间关系的的意义,也可以说领会它们的生动的形象”。 “就几何方面说,抽象的倾向已经引导到代数几何、黎曼几何和拓扑学等宏伟的系统理论;在这里抽象的思维方法、以及代数性质的符号运算获得广泛的运用。然而,直观在几何中所起的作用却是更大,过去如此,现在还是如此。具体的直观不仅对于研究工作有巨大的价值,对于理解和欣赏几何中的研究结果也是这样。”12 那么,一般的来讲,几何的教育价值体现在哪些方面呢?鲍建生(2000)概括归纳出几何教育价值的六个方面13: (1)几何有利于形成科学世界观和理性精神。 (2)几何有助于培养良好的思维习惯。 (3)几何有助于发展演绎推理和逻辑推理思维能力。 (4)几何是一种理解、描述和联系现实空间的工具。 (5)几何能为各种水平的创造活动提供丰富的素材。 (6)几何可以作为各种抽象数学结构的模型。 李淑文(2006)在其博士论文中归纳概括了一些学者的观点总结了几何的教育价值。这些概括和总结考虑了几何作为一个学科课程领域的较为全面的意义。 那么,几何作为数学的一个分支,其研究内容和方法的特殊性又有哪些特别的9 12 用于验证结论的正确性。 关于空间观念的意义和发展,NCTM(全美数学教师理事会,1989)指出: “发展学生的空间观念,儿童必须具有许多经验。例如,几何关系的要点,在空间中物体的方向、方位和透视观点;相关的形状和图形与实物的大小,以及如何通过改变来改变形状。这些经验要依靠儿童以下几个方面的能力。这些活动促进了儿童的空间观念的发展。” “作图、折叠等是发展空间观念的重要部分”;“让儿童想象、绘制和比较放在不同位置上的图形,这样的练习将有助于发展他们的空间观念。”;“空间观念对于解释、理解和认识学生周围现实中的几何是必要的。” 为数众多的研究表明,通过培训能提高空间能力。Ben-Chaim 等报告了一个三周的教学培训计划,它明显增强了五至八年级所有学生的空间直观化能力,而且在能力获得方面没有性别差异。Bishop 发现使用操作材料的小学所教过的学生在空间能力测试方面比缺少这种材料的学校的学生成绩明显占优势。 从以上的文献研究中,我们可以能到这样的结论,关于空间能力的成分、结构及其发展的研究还是比较多的;从数学教育和数学课程的角度出发认识空间想象力和空间观念的意义也已经受到比较充分的关注,但是缺乏较为系统地对学生纵向空间能力或空间观念发展的研究,缺乏对发展学生空间能力或空间观念的教育经验的研究。 二关于几何(空间)概念和几何思维发展的几个主要理论15 如,有平行线推出三角形内角和。但他们还没有意识到逻辑的严密性,也不理解其他演绎体系见的关系。 水平 5:严密性、元数学。学生分析各种演绎系统的高度严密性可以与 Hilbert当初创立几何学时的方法相比。他们能够理解演绎系统的特性,如公设的相容性、独立性和完整性。 范希尔理论的特点主要表现在这样几个方面,第一,学习是不连续的,即学习曲线中有跳跃,这个跳跃表明了存在思维的不连续性和思维水平的定性差异。第二,水平是有序和有层次的,学生若恰好达到某一高级水平,他们必须已掌握大量的低水平内容;第三,在一个水平上被隐含地理解的概念在下一个水平就变的被很清晰的理解了;第四,每个水平都有自己的语言,在一个水平上是“正确”的关系能揭示出自己在另一个水平是不正确的。 那么,范希尔划分的水平是否对学生几何思维有一个准确的描述呢?回答是基本肯定的。例如,尤西斯金(Usisking)发现大约 75%的中学生适用于范希尔模式。伯格(Burger)和肖内西(Shauhnessy)对从幼儿园到大学的学生实施了诊断式谈话,他们报告的学生行为通常与范希尔关于水平的一般描述相一致。 但是研究者们也发现,来自以范希尔理论作基础的大部分研究证据,与来自皮亚杰观点的研究一道都显示出存在一个比范希尔水平 1 更原始的、可能是先决的思维水平,即存在一个 0 水平:前认知。在前认知水平,儿童感觉几何图形,但可能只注意形状只管特征的某些部分。他们不能识别很多的常见形状,他们也许能区别曲线图形和直线图形,但在同类图形中却不能区分它们。 但是不管怎样,范希尔几何思维水平还主要是针对学生的关于图形的性状的认识,也就是说更多的是从欧氏的角度审视学生几何思维的水平。 Bishop 等提出从范畴的角度来考虑每一种 Van Hiele 的水平 29,即认为用现代数学概念解释水平结构,一个范畴由元素的集合组成,一个元素叫做一个对象(objects),另一个是对象之间关系的集合叫做射(morphisms),他们满足了一系列的公设(见 Maclane,1971)。基于这样的考虑,他们把每一水平的对象描述如下: 水平 0:对象是学习的基本元素。 水平 1:对象是一些用来分析基本元素的特征。 水平 2:对象是这些特征的陈述。 水平 3:对象是陈述的部分次序。 水平 4:对象是用来分析部分次序的特征。 例如,将上述对水平的描述运用于几何变换的水平刻画: 水平 0:对象是图形变换,如倾斜、伸缩、结合和旋转。 水平 1:对象是操作图形时的变换特征,如保持长度不变,逆转方向或使形状畸变。 水平 2:对象是有关特征的陈述,如两个反射等于一个旋转或等于一个平移的复合。 14 不同位置的影子。研究还发现,当把钱币或铅笔换成圆锥时,则预言影子的形状要比简单的二维情况更困难,要到十一或十二岁时才能达到最高阶段即形式运算阶段,这时,儿童不借助于光源和物体所作的实验就能直接把正确答案概念化了。 关于空间的知识和概念的产生和发展,可能经验会告诉我们,是在通过“触”、“视”周围物体的感性经验而发展起来的,并在这些感知觉的基础上将这些物体合成一个有意义的整体。但是皮亚杰发现这个假定或者说结论实际上错误的,他发现事实上儿童空间观念的演化是在两个不同的水平上进行的知觉水平(即通过视和触地感性学习)和思维或想象水平。这后一个水平并非如人们所设想的在逻辑上是从前一个水平来的,而是各自沿着本身的途径发展,因而在某些地方必须将两者分别的发展协调起来。 物质世界提供了一个天然的水平和垂直形式的参照系,地板和地面代表着水平面,许多垂直的物体比如墙壁、树木、轮船的桅杆、旗杆等都代表着垂直。当需要的时候,儿童是否会运用这样一些垂直和水平的系统呢?皮亚杰研究的结果发现,刚入学的儿童很少能这样做。只有到了十一岁至十二岁后的思维的形式运算中,儿童方能建立真正规范的参照系,使他能真正比较距离和位置。因而,到小学毕业进入初中时,儿童对于画地图所必需的经验才有所准备。 通过制作布局模型,皮亚杰来考察儿童确定物体彼此间的位置的能力。皮亚杰的研究发现,儿童在经历了几个阶段的发展后,在阶段 4 时,即从十一岁到十三岁,儿童终于达到抽象水平或“形式”运算水平。儿童为了能够确定物体的位置,已经能够在自己的头脑中具有了相交于模型中心的抽象的坐标轴(一根垂直的和一根水平的坐标轴),以作为复制模型的最好的参照物。 皮亚杰关于儿童学习几何、把握空间、认识图形等思维发展水平的研究,为我们从某些角度了解儿童的几何(空间)认知特点提供了很好的素材和结果。 (二)范希尔(Van Hiele)关于学生几何思维水平的研究 就像皮亚杰等人的工作一样,范希尔的理论有着广泛的影响并被深入地研究。范希尔的理论认为学生通过几何思维水平的进步,从一个像格式塔的直观化水平不断地提高到描述、分析、抽象和证明等复杂水平。范希尔将学生几何思维的发展水平分为 5 个层次30: 水平 1:直观化。学生通过整体形状来认识图形,他们能够说出三角形、正方形、立方体等,但不能准确判定图形的性质。 水平 2:描述、分析。学生通过图形的性质来识别图形并能确定图形的特征。如学生能这样分析图形的特性“矩形的对角线相等”、“菱形的边都相等”。但他们看不到图形的联系。(学生可能会满足于一个图形因为它是正方形所以不是长方形) 水平 3:抽象、关联。学生能够将图形和他们的特性联系起来,能形成抽象的定义,区分概念的充分和必要条件。知道“每个正方形都是矩形”但他们不能组织定理系列来证明他们的观察。 水平 4:形式推理。学生掌握了定理系列,并能从一个定理推出另一个定理。13 特点和阶段性。 例如,为了研究儿童对透视或者呈现形状的理解,皮亚杰将儿童、一个娃娃和一根棒安排成如右图所示的位置,实际上,儿童看到的是长的,而娃娃只看到棒的断面。要求儿童画出自己看到的样子以及娃娃看到的样子。可以观察到三个阶段:第一阶段,4 到 7 岁的儿童表现出完全不会或部分地不会对不同的视点加以区别。在这个阶段的较高水平,儿童开始对各种不同的视点加以区别。 第二阶段,受试的 5 岁的儿童的有些回答是正确的,而另一些却错了。比如,当木棒对于娃娃水平或竖直放置时,能够正确画出。但当木棒指向娃娃时,却无法画出木棒的断面来。类似的,对于一个圆形的金属片,该儿童只能画出圆形金属片正对它时的样子,但它的侧面却仍被画成完整的圆形或半圆形。 第三阶段,儿童的思维处于运算的、智慧的或抽象的水平,与前两个水平根本不同。前两个水平儿童的思维都是根据感觉和知觉映像的。在此阶段,他(汉恩,八岁)能够概括出一种观念,即当一个物体离开观察者倾斜时,它看上去就短些。并且他知道随着木棒继续倾斜至水平时,他只能看到一点圆形的东西。类似的,正面看一个圆盘,他把它画成一个圆,当盘子稍微倾斜一点时,汉恩画了一个椭圆,继续下去,他画出了更扁的椭圆,最后是一条线。 皮亚杰还将透视方面的研究拓展到对各种物体所投射的影子的研究(如上图)。比如,当一支铅笔、一枚硬币或一块长方形硬纸板倾斜成各种角度以及旋转到侧面或端面等各种位置时,让儿童试着用图画来预言影子将是什么样。从这类活动中可以发现,处于各个发展阶段的儿童的情况,同其他类似的研究结论相似。比如,当实验用的物体时一支铅笔,那么,不满七岁或八岁的前运算阶段的儿童,他们将自己的视点放在物体上,完全受自我中心所支配,不能从其他的视点来考虑,总是将物体画成同样的模样。在阶段 2,儿童是从自身的位置而不是从光源的角度来表征物体的。而处于运算水平的儿童能从不同的视点进行考虑,正确地预言铅笔房放在12 16 水平 3:对象是陈述的序列,如证明发射产生等距或证明反射和拓张产生一致性。 水平 4:对象是一些特征,它们可以用来分析各种几何转换群。 当然,以上的分析和讨论主要是针对中学生进行的,可以作为我们研究小学生空间观念水平的参考。 (三)SOLO 分类法 SOLO(Structure of the Observed Learning Outcome)分类法是 Biggs and Collis于 1982 年提出的。他们认为描述学生学习的发展和结构,最恰当的方法是对学生的反应进行讨论。 SOLO 分类法提出了一套用以评价各个领域的认知表现的分类方法,其中包含了从简单到复杂的五种思维作用方式,他们与 Piaget 的认知发展阶段大致平行。这五种思维作用方式分别是:感觉运动方式(从出生开始)、表象阶段(大约 18 个月开始)、具体符号方式(大约 6 岁开始)、形式方式(大约 16 岁开始)、超形式方式(大约 20 岁开始)。 每一种思维方式又与一系列逐次复杂化的反应水平相联系,也就是说,在每个思维作用方式下,都存在有 5 个水平: 前结构水平、单一结构水平、多元结构水平、关联水平、进一步抽象水平。 这 5 个水平是累积的且逐级复杂,学习的焦点主要集中在各个思维作用方式的中间三大水平上。近年来,有人尝试将 Van Hiele 水平与 SOLO 分类法综合考虑(Jurdak,M.1989;Pegg,J.,Davey,G., 1998)31 32,他们认为:表面上看,两个模型时不同的,但是实际上,他们有着相同的特质且是相互支持的。思维必须通过个体对刺激物的反应来呈现,而反应也经常代表着所包含着的思维水平。Van Hiele 的水平划分更适合被看作为一个理论上的建构,用以对几何上的思维过程提供一个全局的观点,而 SOLO 分类法则可以更好地对个体行为的变化进行描述。 Jurdak,M.(1989)将二者做了如下的对应: 还有 Pegg,J.,Davey,G.,(1998)等也对二者进行了综合。 17 课程更多的是安排不安排几何的内容,度量衡是否是小学生学习几何的主要内容?是否应该从低年级起着手发展学生的空间观念的问题等等。柯普兰(R.W.Copeland,1979)在介绍皮亚杰研究的教育意义一书“儿童怎样学习数学”中指出,几何学是数学中一门研究空间位置和定位的学科。几何学有多种,与儿童经验最为密切相关的是拓扑、欧氏几何、投影几何及度量几何或测量。 他进一步指出,目前向儿童引入几何知识总是从欧氏几何开始的如线段、三角形、正方形和圆这些欧氏图形。在小学低年级所出现的几何内容,大多数是这样一些活动,如用线段连接各点,对画出来的图形进行再认并说出它的名称,象三角形、正方形和长方形等。这类活动涉及欧氏几何的内容,例如一个三角形可认为具有三条刚性的边这些边是不会弯曲也不会延伸的。当移动这个三角形与另一个三角形进行比较时,它的大小和形状不会改变。 目前小学里正在向大多数儿童介绍的几何,是在下述假定的基础上编排的,即一个儿童的空间概念是欧氏几何的概念。但是皮亚杰认为这个假定是不正确的。他认为儿童在几何方面的发展顺序似乎正好同历史上发现几何的顺序相反从拓扑到射影几何再到欧氏几何。 关于怎样让儿童学习几何?“我们认为几何学习大致有四个步骤:直观感知操作确认思辩论证度量计算。但是中国的几何教学,把前两个步骤忽略了,变成纯粹的思辩论证,以及论证基础上的计算。缺乏直观,实际上就扼杀了几何”31 (一)国外小学数学课程中的几何 纵观各国小学几何课程的发展历史,我们可以从中发现课程专家和数学教育专家对小学几何课程的地位和价值的认识及其变化,也有助于我们分析小学几何课程的设置。 1、美国小学几何课程 1989 年之前,美国的中小学没有统一的课程标准,因此几何课程内容及要求也就非常的随意,在第一次国际数学研究(FIMS)和第二次国际数学研究(SIMS)中,美国的几何成绩都是最差的。这也从一个方面反映出美国几何课程的状况。 在 1989 年颁布的“美国学校数学课程与评价标准”中11,在幼儿园4 年级的标准中,描述了这个年龄段的变化概要,其中几何方面加强的内容为:几何图形的特征;几何关系;空间观念;测量过程;有关测量单位的概念;实际测量;测量的估算;整个课程中测量和几何概念的运用。削弱的内容为:初步集中命名几何图形;记忆各种测量单位的代换。 在这个阶段,标准还以几何与空间观念为题刻画了此阶段对这部分内容学习的要求: 描述、作模型、作图和按形体分类; 研究和预言结合、分割和变换形状的结果; 发展空间观念; 19 (2)理解图形的性质,主要是认识基本的平面图形和立体图形及其性质,还包括一些与空间观念发展有关的内容,如,制作并绘画更精确的 2-D 和 3-D 的形状;在正多边形中认识轴对称;认识它们几何的特征和性质,包括角、面、平行线和对称,使用它们图形的分类并解决问题;根据 2-D 的形状想象 3-D 的形状。 (3)理解位置和运动的性质,要求学生应该做到: a. 想象并用适当的语言描述运动 b. 对实际情形中的物体进行(几何)变换;使用信息和通讯技术变换映像;想象并预测一个形状经过旋转,反射或平移后的位置; c. 在方格上发现和画出不同方位的二维图形;首先在第一象限,然后在所有的四个象限,用坐标确定和画出形状。(例如:使用坐标去确定一计算机游戏上的位置。) (4)理解测量。 由此可见,英国小学几何课程标准中要求的内容是比较丰富的,其中与空间观念发展有关的内容涉及到几何变换和二维和三维图形之间的转换等。 3、其他几个国家或地区的小学几何课程 (1)荷兰 1993 年之前,荷兰没有一般意义上的国家数学课程标准。从 1998 年起,荷兰政府教育与科学文化部开始颁布全国统一的“教育获得性目标”,具体刻画了荷兰中小学生毕业之前必须学到的内容和应该达到的起码标准。标准中将测量与几何分别进行其目标的阐述的,其中小学(5-12 岁)阶段的几何目标为: 学生应当具备一些基本的几何概念,通过这些概念他们能以几何的方式把握和刻画空间; 学生应能运用空间推理。为此,他们应能使用积木块建筑、平面图、地图、照片,以及关于位置、方向、距离和比例尺方面的信息; 学生应能解释阴影形成的原因,能制作一些图形,能设计和构建规则物体的积木模型。 (2)新加坡 从1959年以来的50多年里,新加坡的中小学数学教学大纲也经历了数次的变化。现行的2001年的数学教学大纲中规定的小学几何内容1如下: 一年级:形状;模型; 二年级:形状;模型;直线、曲线和表面积 三年级:角的概念 四年级:垂直与平行线;角度的概念;对称;几何图形(矩形、正方形、菱形、平行四边形、梯形、三角形);正方形和矩形的性质;正方体与长方体及其组合的 2 维表示 五年级:直线上的角、同顶角、对顶角;八角罗盘;平行四边形、菱形、梯形,和三角形的性质;几何作图(正方形、矩形、平行四边形、菱形、三角18 把几何观念与数和测量的观念联系起来; 认识和鉴别学生周围的几何。 可以看出,美国的课程标准中对几何的要求还是比较高的,并突出了空间观念的培养目标。 2000 年全美数学教师理事会又重新颁布了“美国学校数学教育的原则和标准”。“几何”作为公共的标题在各个学段中成为一致的目标要求:分析二维和三维几何图形的特点和性质,并具有关于几何关系的数学推理能力;用坐标和其他表征系统表明位置和描述空间关系;用变换和对称等原理分析数学情景;用直观、空间推理和几何模型解决问题。 在 K-2 年级和 3-5 年级的标准中,分别就以上四个方面提出了更进一步细致的要求。从这些具体要求中,我们不难看到,美国小学的几何课程的关注点主要是对图形的认识、对空间关系的把握、用几何的思维方式认识周围的世界、空间直观和推理。标准认为,几何提供给学生一个不同于数但又与数相关联的数学思维方法。随着学生们逐渐熟悉形状、结构、位置和几何变换等概念,随着他们发展空间推理能力,他们就为自己理解空间世界、理解其他数学概念以至于理解艺术、自然科学以及社会科学的有关概念打下了基础。有些学生的几何和空间概念甚至超出了数方面的能力,这样的能力有利于培养学生学习数学的积极性,并为学习数以及其他的数学概念提供了一个良好的环境。 无论是从该标准的内容要求上,还是从理念表述上,我们都可以清晰地看出标准对学生几何方面的知识和能力的要求,尤其是对空间能力和空间观念的培养的重视以及对它们带给学生发展的重要性的期待。 2、英国小学几何课程 英国的数学课程也经历了一个从中央、地方和学校的伙伴关系到建立全国统一的课程的过程。1989 年颁布的国家统一课程翻开了英国数学课程改革的新的一页。在这个课程中,形状、空间是三个内容部分之一,在第一学段(1-2 年级)和第二学段(3-6 年级)中学习形状、空间和测量的几何内容。 1995 年英国政府颁布了修订后的国家课程32,在形状、空间和测量这个成绩目标中基本保持原来的三个方面的内容:理解和运用图形的范型和性质;理解和运用位置和运动的性质;理解和运用测量的方法。具体在第一阶段,则要求学生制作二维、三维图形;对图形进行分类;认识基本的二维和三维图形的性质;描述位置;认识简单的变换(平移、旋转特殊的角度);测量等 第二阶段,几何学习的内容进一步丰富,增加了包括想象和描述图形的运动;理解简单图形的全等;认识图形的轴对称和旋转对称,通过平移、反射和旋转转换二维图形;在特定的情况下使用坐标;选择合适的单位测量等。 在前两个国家课程标准的基础上,2000 年英国政府又进行了课程标准的调整,例如,在第二学段的“形状、空间与测量”中共有四项要求: (1)图形、空间和测量的应用,主要是认识测量并应用其解决有关问题。 16 20 形);嵌图 六年级:几何图形中的角;菱柱和菱锥的2 维表示;立方体、长方体、菱柱和菱锥的展开图 与1959年相比,小学阶段的几何内容进行了一定的消减,不再要求学生对3维立体模型进行绘图而仅要求能够识别,不再要求学生进行圆规作图,大纲认为这些技能对于小学生而言过于复杂此外,平面图和正视图、三角形内角之和、等腰三角形的性质、三角形全等(非正式教授)以及简易的轨迹和坐标等也都从大纲中消失。 (3)香港 (1)1999 香港特区政府颁布了小学数学科课程纲要,其中的“图形与空间”的具体学习内容目标在第一阶段(小一至小三)和第二阶段(小四至小六)的学习目标如下: 第一阶段 辨认及描述线、角、平面和立体图形,并把它们分类 直观地认识立体图形的基本性质 认识平面图形的性质 从已知条件制作平面和立体图形 辨别四个方向 第二阶段 理解平面和立体图形的性质 进行平面和立体图形的分类及制作 辨别八个方向 (4)日本 日本现行的小学算数科学习指导要领中的学习内容是从“数和计算、量和测量、图形以及数量关系”四个方面展开的。 在“图形”这个领域中,学习指导要领抓住图形的特征,对图形进行分类,把基本图形的构成作为重点指导。在认识基本图形方面有:日常生活中的平面图形和立体图形、三角形、四边形等以及长方体、正方体等;在认识构成图形的要素方面有:直线、面、直角、边、对角线、圆周等;从分析图形的着眼点有:观察、构成、分解、操作等活动,还有边或角的相等、圆周率、展开图、示意图等。 与过去的学习要领相比,一些小学的几何学习内容被移到中学,这些内容有图形的全等、棱柱的展开图、正视图、平面图、图形的对称,扩大图、相似图形等。 通过对东西方几个国家小学几何课程的目标及内容的了解,我们似乎能够得到这样的结论: 从纵向上看,各个国家都越来越重视在小学阶段的几何课程的学习,无论是目标的设定还是内容的安排。 横向上看,西方国家小学几何课程的内容普遍都比较丰富,涉及的内容较多, 22 的意义和作用给予解释和阐述(这也与大纲文本的格式有关),更遗憾的是在内容上却没有得到体现。 4、新课程中的几何(2001-现在) 2001 年颁布的义务教育数学课程标准在“空间与图形”领域阐述了相关年龄阶段的学生在几何与空间方面应达到的标准34。“空间与图形”的主要内容涉及现实世界中的物体、几何体和平面图形的形状、大小、位置关系及其变换。具体内容有:空间和平面的基本图形,图形的性质和分类;平面图形基本性质的证明;图形的平移、旋转、轴对称、相似和投影;运用坐标描述图形的位置和图形的运动。 在小学阶段,“空间与图形”主要从以下四条线索展开:图形的认识、测量、图形与变换、图形与位置。从中可以看出,几何课程的内容较之过去来讲有了较大的丰富。除了对图形性质的认识以外,图形的运动与位置关系等也成为学生学习几何的内容,这从本质上就反映出了几何课程目标价值取向:发展空间观念、发展几何直观、发展推理能力等。 在课程标准中,空间观念得到更丰富的解释,内容标准也与之相呼应。标准罗列了六个方面的行为目标以示空间观念的体现。概括来说,空间观念是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;能够想象出空间物体的方位和相互之间的位置关系;根据语言描述或通过想象画出图形等。 在新的课程标准中几何目标的重新定位以及与之相应的学习素材和内容的规定,也是我国小学几何课程发展的一个重要的阶段。 21 关注空间观念的培养,关注几何学习与现实的联系,将动态和静态内容结合起来。所谓静态,即指我们传统的几何课程中所关注的一些部分,如度量衡方面的知识、图形的认识等;而动态,则包含了变换、视图、立体的展开与折叠等内容。一些国家更侧重于希望学生用“动态”的眼光去“了解、探索和征服我们所居住、呼吸和运动的空间,以使我们对它有更多的了解”(Freudenthal,1973)。而东方的一些国家则仍以静态的内容为主。 (二)我国小学数学课程中的几何33 综观我国 20 世纪小学几何课程的发展历史,我们不难看到它经历了一个从无到有曲折发展的过程,这个过程大致可以分为这样几个阶段: 1、无几何阶段(1902-1923) 在 20 世纪初制定的几部学堂章程里(1902 年、1904 年、1912 年、1916 年,1923 年),几乎没有几何的内容。 2、主要以图形的识别和测量作为几何内容(1929-1952) 从 1929 年开始,小学的数学课程开始有了关于平面图形的认识的内容,如三角形、圆形和方形的认识;正方形、长方形的认识;圆和椭圆的认识;菱形、梯形、平行四边形的认识等;但对于这样的内容要求,并没有在总目标中给出定位。课程的总目标是这样叙述的:助长儿童生活中关于数的常识和经验;养成儿童解决日常生活里数量问题的实力;练成儿童日常计算敏速和准确的习惯。而且在教学方法要点和最低限度中都没有提及关于几何内容的要求。 然而,关于对图形性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 如皋市高一年级下学期教学质量调研(一)历史试题
- 中医肿瘤护理个案-肺癌患者护理实例
- 2025年磐石市总工会公开招聘工会社会工作者(8人)历年真题汇编附答案解析
- 浙江国企招聘-2025温州市交通发展集团有限公司招聘工作人员8人历年真题汇编附答案解析
- 2026广东“百万英才汇南粤”-广州市从化区教育局第一次招聘事业单位编制教师229人笔试模拟试卷带答案解析
- 2026年质量员之土建质量基础知识考试题库附参考答案(预热题)
- 2026年设备监理师之设备工程监理基础及相关知识考试题库200道及参考答案【培优a卷】
- 2026年设备监理师之质量投资进度控制考试题库200道附参考答案(培优b卷)
- 2025福建三明永安市人民政府燕南街道办事处招聘编外聘用驾驶员1人备考题库附答案解析
- 2025年中国科学技术大学火灾安全全国重点实验室劳务派遣岗位招聘2人备考公基题库带答案解析
- 七年纪学生安全教育课件
- (2025)共青团入团考试题库及完整答案
- 2025年安全生产起重机操作试题及答案
- 《计量促进民营经济发展壮大若干措施》
- 广东省佛山市顺德区大良街道顺峰小学2024-2025学年三年级上学册期中测试数学试卷(含答案)
- 劳技课凉拌菜课件
- 2025年阿克苏辅警招聘考试题库及完整答案详解一套
- 2025年新教材部编人教版二年级上册语文 第15课 朱德的扁担 教学课件
- 锅炉事故应急专项预案
- 学习宪法精神争做守法青年
- 胰岛素抵抗综合管理方案与减重训练
评论
0/150
提交评论