已阅读5页,还剩77页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
位移法,学习内容,1.位移法的基本概念2.等截面杆件的刚度方程3.无侧移刚架的内力计算4.有侧移刚架的内力计算5.位移法的基本体系6.对称结构的计算,要求:熟练掌握位移法基本未知量和基本结构的确定、位移法典型方程的建立及其物理意义、位移法方程中的系数和自由项的物理意义及其计算、最终弯矩图的绘制。熟记一些常用的形常数和载常数。掌握利用对称性简化计算。掌握荷载作用下超静定结构的计算,位移法方程有两种建立方法,写典型方程法和直接平衡方程法。,满足基本假设的几何不变体系在一定外因作用下内力和位移的物理关系是一一对应的;力满足平衡条件;位移满足协调条件。,当以多余未知力为基本未知量作为突破口时采取的方法就是力法;当以某些结点位移作为基本未知量作为突破口时采取的方法就是位移法。,超静定结构计算的总原则:欲求超静定结构先取一个基本体系,然后让基本体系在受力方面和变形方面与原结构完全一样。,超静定结构计算,位移法是计算超静定结构的另一种基本方法。,分析超静定结构时,有两种基本方法:第一种:以多余未知力为基本未知量;先求其反力或内力,然后计算位移力法。第二种:以结点未知位移为基本未知量;先求其位移,然后再计算内力位移法。,第一节位移法的基本概念,位移法是以结点的位移作为的未知量的。,位移法是以力法作为基础的。,下面以一个例题来介绍一下位移法的解题思路。,结点位移与杆端位移分析,由材料力学可知:,由方程解得:,位移法方程,把回代到杆端力的表达式中就可得到各杆的轴力:,由结点平衡:,由结点平衡或截面平衡,建立方程;,结点位移回代,得到杆端力。,总结一下位移法解题的步骤:,确定结点位移的数量;,写出杆端力与杆端位移的关系式;,解方程,得到结点位移;,位移法未知量的确定,位移法是以结点的位移作为的未知量的。,结点:指杆件与杆件的交结处,不包括支座结点,杆件:等截面的直杆,不能是折杆或曲杆。,为了减少未知量,忽略轴向变形,即认为杆件的EA=。,例1:,例2:,例3:,有四个刚结点E、F、D、C,由于忽略轴向变形,此四点的竖向位移均零,因此该结构的未知量为:,例4:,有两个刚结点B、C,由于忽略轴向变形,B、C点的竖向位移为零,B、C点的水平位移相等,因此该结构的未知量为:,结论:,刚架(不带斜杆的)一个结点一个转角,一层一个侧移。,有两个刚结点B、C,由于忽略轴向变形及B、C点的约束,B、C点的竖向、水平位移均为零,因此该结构的未知量为:,例5:,例6:,例7:,例8:,例9:,刚架在均布荷载作用下,产生如图曲线所示的变形。,第二节等截面直杆的转角位移方程,杆长为:L未知量为:,BC杆,对于BA杆:其变形与受力情况相当于:一根两端固定的单跨超静定梁,在B端发生了角位移的结果,其杆端力也可以用力法求解。,BA杆,为此,我们要把各种单跨超静定梁在支座位移及荷载作用下的杆端弯矩用力法求出,然后列出表格,以供查用。,剪力与轴力的规定没变。,下面开始对单跨超静定梁在支座位移及荷载作用下的杆端弯矩用力法进行逐个求解。,弯矩的正负规定:绕杆端顺时针旋转为正,逆时针旋转为负,但对结点与支座,逆时针旋转为正。,转角和侧移都是以顺时针为正。,如下图所示,两端固定的杆AB,发生如图所示的支座位移,求杆AB的杆端弯矩。,MBA,MAB,B,A,杆端力和杆端位移的正负规定:,杆端转角A、B位移,都以顺时针为正。杆端弯矩都以顺时针为正。,三次超静定结构,只能用力法求解,需解除三个约束。,1、确定基本体系,2、确定基本方程,3、确定系数与自由项,4、解方程,求杆端弯矩,几种不同远端支座的刚度方程,(1)远端为固定支座,由于B=0带入方程(a)中得,(2)远端为活动支座,由于MBA=0带入方程(a)中得,(3)远端为滑动支座,由于,带入方程(b)中得,(b),由单位杆端位移引起的杆端力称为形常数。,4i,2i,0,3i,0,i,i,0,由荷载求固端反力,固端弯矩与固端剪力:不同杆件在荷载作用下的杆端弯矩和杆端剪力。因为它们是只与荷载形式有关的常数,故又称为载常数,注:1)可在载常数表中查到,(此表由力法计算得到),2)三类杆件:两端固定的梁一端固定、另一端简支的梁一端固定、另一端滑动支撑的梁,3)固端弯矩与固端剪力均以顺时针为正。,单跨超静定梁简图,由外荷载单独作用引起的杆端力称为载常数。,在已知荷载及杆端位移的共同作用下的杆端力一般公式:,两端固定单元杆端弯矩表达式:,此固定端一般指结构内部杆与杆之间的刚结和有已知支座转角的固定端。,一端固定一端铰结单元杆端弯矩表达式:,此固定端一般指结构内部杆与杆之间的刚结和有已知支座转角的固定端。,此铰接一般指结构内部杆与杆之间的铰结和与基础连接的铰支端。,一端固定一端滑动单元杆端弯矩表达式:,此固定端一般指结构内部杆与杆之间的刚结和有已知支座转角的固定端。,此滑动端一般指结构内部杆与杆之间的滑动连接和与基础连接的滑动端。,杆长为:L,BA杆,BC杆,2.写出杆端力的表达式,A,EI,B,C,EI,q,4.解方程,得:,5.把结点位移回代,得杆端弯矩,6.画弯矩图,M图,先化整为零,再集零为整,通过化整为零得到杆件刚度方程,即在知道每个杆件由于杆件的形常数和载常数的基础上确立杆端位移和杆端力的关系;通过集零为整建立结点平衡方程,即利用体系位移协调和部件平衡条件建立关于结点的平衡方程;解方程可得出结点位移,进而确定杆件内力。,F1=0,施加约束锁住结点,将结构变为两根超静定杆,求荷载作用的弯矩图。,人为施加力偶,使结点产生角位移,求单杆弯矩图。,位移法计算思路的引入,ql2/48,因此,位移法分析中应解决的问题是:,确定单跨梁在各种因素作用下的杆端力。确定结构独立的结点位移。建立求解结点位移的位移法方程.,第三节确定独立结点位移,结构的结点位移,独立结点线位移,独立结点角位移,确定未知量总原则:在原结构的结点上逐渐增加附加约束,直到能将结构拆成具有已知形常数和载常数的单跨梁为止。未知量个数要最少。,独立角位移个数等于位移未知的刚结点个数;独立结点线位移个数等于结构铰化后为使铰结体系几何不变所要加的最少链杆数。,在结点上施加附加约束以消除独立位移即得位移法的基本结构,对应独立角位移处施加限制转动的刚臂;对应独立线位移处施加限制平移的链杆支座。,第三节确定独立结点位移,刚架在荷载作用下结构发生了变形,结点C、D发生了转动和移动。为了阻止结点移动,在结点D(或结点C)上加一附加链杆(其作用是阻止结点线位移而不限制结点转动)。在原结构上,凡属各杆互相刚结的结点(包括组合结点),都应加入一附加刚臂,而全铰结点不需附加刚臂,故只需清点刚结点的数目。,位移法的基本结构是单跨梁系,第三节确定独立结点位移,刚架铰化以判断加附加链杆的个数,刚架变成铰结体系,该体系需增加两根链杆才能组成几何不变体系。原结构加上这两个链杆后各结点就不能移动了.,第三节确定独立结点位移,寻找刚架刚结点数以判断加附加刚臂的个数,在结点线位移固定的情况下,刚架各刚结点上附加刚臂后就形成单跨梁系的基本结构了。,第三节确定独立结点位移,寻找刚架刚结点数以判断加附加刚臂的个数,为了得到基本结构,有些情况并不需要把所有结点都变成不动结点。如图(a)所示结构中,对联结CD与DE杆而言,结点D为刚结点,也有转角位移。又如图(b)所示结构中,EF附属部分为一静定简支梁。,第三节确定独立结点位移,【例题】确定所示结构的位移法基本结构。,【解】在结点F加一个附加链杆,这时结点F不能移动。F、B二结点不移动,结点E也就不移动了。E、A二结点不移动,结点D也就不移动了。可见,只要加一个支杆,一排结点就都不移动了,不管梁是水平的,还是斜的。在刚结点D、E处加入二个附加刚臂。位移法基本结构如图示。,第三节确定独立结点位移,【例题】确定所示结构的位移法基本结构。,【解】化为铰结体系(未画出)不难看出,需加入两根附加支杆才能使其形成几何不变体系。在刚结点B、C、D处加入三个附加刚臂。位移法基本结构如图示。,第三节确定独立结点位移,【例题】确定所示结构的位移法基本结构。,【解】该结构为一阶形梁,若用位移法计算,应将变截面处取为一个结点。铰结体系如图(b)所示,容易看出结点C能上下移动,需加入一附加支杆(图(c)。此外,还应在结点C处加入一附加刚臂。位移法基本结构如图(d)所示。,第四节建立位移法基本方程,用位移法计算图(a)所示刚架时,首先要将其变为位移法基本结构。,1.典型方程法,由于原结构只有结点B能转动,故需在结点B上加一刚臂1,以阻止其转动。,第四节建立位移法基本方程,修改的结构变成了两个两端固定梁BA和BC组成的位移法基本结构。,1.典型方程法,基本结构与原结构的差别表现为:无转角,给结点施加了一个反力矩。,欲消除其差别,需将刚臂1即结点B转动一个应有的即实际的角度Z。,第四节建立位移法基本方程,刚臂转到应有角度时,结构恢复了附加刚臂前的自然状态,去掉刚臂,也会停留在原处,而不会再转动,即使不去掉刚臂,刚臂也不会起作用,即此时刚臂的反力矩R1=0由原结构变为基本结构,再由基本结构恢复为原结构的过程为:先加刚臂,固定结点后,加上荷载,此时刚臂产生反力矩。然后,转动刚臂,放松结点。转动一点,刚臂的反力矩就减少一点,转动到应有位置时,刚臂的反力矩就变为零了。,1.典型方程法,结构受两种作用,由叠加原理可分解为结点位移和杆中荷载两种情况。只有外力作用而无转角Z1的影响的杆和只有杆端位移影响的杆。可用形常数和载常数求得。,1.典型方程法,FP,基本体系,基本方程,基本未知量,基本结构与原结构有两点区别:,消除差别的办法是使附加约束上的总反力等于零。,原结构在外因作用下有结点位移,而基本结构在外因作用下是无结点位移的;原结构无附加约束,而基本结构有附加约束。,第四节建立位移法基本方程,1.典型方程法,FP,基本体系,基本方程,基本未知量,R1是基本体系在结点位移Z1和荷载共同作用下产生的附加约束中的反力(矩),按叠加原理R1等于各个因素分别作用时产生的附加约束中的反力(矩)之和。于是得到位移法典型方程:,第四节建立位移法基本方程,1.典型方程法,根据线弹性体系的叠加原理可知:约束位移和外因共同作用下基本结构附加约束上产生的总反力等于零。,以上各量可由形常数和载常数利用隔离体平衡求得。,kij是与外因无关的反力影响系数,是基本结构的特性。,RiP是与基本结构的广义荷载反力。,第四节建立位移法基本方程,1.典型方程法,注意:位移法方程的物理意义:基本体系在荷载等外因和各结点位移共同作用下产生的附加约束中的反力(矩)等于零。实质上是原结构应满足的平衡条件。位移法典型方程中每一项都是基本体系附加约束中的反力(矩)。其中:RiP表示基本体系在荷载作用下产生的第i个附加约束中的反力(矩),称为自由项。kijZj表示基本体系在Zj作用下产生的第i个附加约束中的反力(矩);,第四节建立位移法基本方程,1.典型方程法,主系数kii表示基本体系在Zi=1作用下产生的第i个附加约束中的反力(矩),kii恒大于零;付系数kij表示基本体系在Zj=1作用下产生的第i个附加约束中的反力(矩);根据反力互等定理有kij=kji,付系数可大于零、等于零或小于零。由于位移法的主要计算过程是建立方程求解方程,而位移法方程是平衡条件,所以位移法校核的重点是平衡条件(刚结点的力矩平衡和截面的投影平衡)。,第四节建立位移法基本方程,等截面直杆的转角位移方程:各种因素共同作用下杆端弯矩的表达式称为转角位移方程。,两端固定梁转角位移方程:,2.直接平衡法,一端固定一端铰支梁转角位移方程:,两端固定梁转角位移方程:,2.直接平衡法,第四节建立位移法基本方程,q,54/98,一端固定一端铰支梁转角位移方程:,一端固定一端定向支承梁转角位移方程:,已知杆端弯矩,可由杆件的矩平衡方程求出剪力:,2.直接平衡法,两端固定梁转角位移方程:,第四节建立位移法基本方程,直接列平衡方程法:位移法方程实质上是静力平衡方程。对于结点角位移,相应的是结点的力矩平衡方程;对于结点线位移,相应的是截面的投影平衡方程。直接由转角位移方程,写出各杆件的杆端力表达式,在有结点角位移处,建立结点的力矩平衡方程;在有结点线位移处,建立截面的投影平衡方程。这些方程就是位移法的基本方程。,2.直接平衡法,以结点B的转角位移为基本未知量Z。写出相应的杆端刚度方程。利用结点平衡列出方程,进而求杆件内力。,2.直接平衡法,1.典型方程法求解步骤,确定位移法基本未知量,加入附加约束,取位移法基本体系。令附加约束发生与原结构相同的结点位移,根据基本结构在荷载等外因和结点位移共同作用下产生的附加约束中的总反力(矩)=0,列位移法典型方程。绘出单位弯矩图、荷载弯矩图,利用平衡条件求系数和自由项。,解方程,求出结点位移。用公式叠加最后弯矩图。并校核平衡条件。根据M图由杆件平衡求FQ,绘FQ图,再根据FQ图由结点投影平衡求FN,绘FN图。,第五节计算步骤和举例,2.典型方程法分析举例,第五节计算步骤和举例,1)确定基本未知量Z1=B;,2)确定位移法基本体系;,3)建立位移法典型方程;,例题:用位移法解图示连续梁作弯矩图。,2i,4i,3i,k11=4i+3i=7i,第五节计算步骤和举例,1)确定基本未知量Z1=B;,2)确定位移法基本体系;,3)建立位移法典型方程;,例题:用位移法解图示连续梁作弯矩图。,k11=4i+3i=7i,R1P=159=6,MP,2.典型方程法分析举例,第五节计算步骤和举例,16.72,5)解方程,求基本未知量;,M图(kN.m),7)校核平衡条件,MB=0,例题:用位移法解图示连续梁作弯矩图。,2.典型方程法分析举例,第五节计算步骤和举例,例题:用位移法解图示无侧移刚架,作内力图。,4m,4m,i,i,i,基本体系,2.典型方程法分析举例,2m,第五节计算步骤和举例,MP,+,基本体系,解之:Z1=F1P/k11=2/i,叠加弯矩图,2.典型方程法分析举例,例题:用位移法解图示无侧移刚架,作内力图。,第五节计算步骤和举例,2m,i,i,i,16,2,M图(kN.m),33,FS图(kN),2.典型方程法分析举例,例题:用位移法解图示无侧移刚架,作内力图。,基本体系,例题:用位移法解图示无侧移刚架,作内力图。,第五节计算步骤和举例,基本方程,第五节计算步骤和举例,例题:用位移法解图示无侧移刚架,作内力图。,1、基本未知量,2、基本体系,3、典型方程,例题:用位移法解图示无侧移刚架,作内力图。,1、基本未知量,2、基本体系,3、典型方程,4、求系数和自由项,1、基本未知量,2、基本体系,3、典型方程,R1P=4041.7=1.7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年劳务员之劳务员基础知识考试题库200道及完整答案(必刷)
- 2026年设备监理师之质量投资进度控制考试题库200道及一套答案
- 2025江苏省灌南县教育局所属学校冬季赴高校招聘高层次人才66人备考公基题库附答案解析
- 2026重庆市地质矿产勘查开发集团有限公司毕业生校园招聘46人历年真题汇编带答案解析
- 2025福建海峡银行董事会办公室社会招聘参考题库附答案解析
- 2026北京天玛智控科技股份有限公司全球校园招聘笔试模拟试卷附答案解析
- 2025四川成都市泡桐树中学同文分校教师招聘历年真题汇编带答案解析
- 2025年滁州市第一人民医院公开招聘编外工作人员5人备考题库带答案解析
- 2025贵州黔南州粮油储备库主任选聘备考题库附答案解析
- 2026天津医科大学口腔医院人事代理制(第一批)招聘12人备考题库附答案解析
- 《抗肿瘤药物》课件
- 警察抓捕教学课件
- 台湾问题形势与政策课件
- 公司安保方案(3篇)
- T/GXSXFS 007-2021肉羊全混合日粮
- 东方航空民航招飞英语测试题及答案
- 《注意力缺陷障碍干预策略》课件
- GB/T 25820-2025包装用钢带
- 第八讲共奉中国与中华民族内聚发展(辽宋夏金时期)-中华民族共同体概论专家大讲堂课件+第九讲混一南北与中华民族大统合(元朝时期)-中华民族共同体概论专家大讲堂课件
- DB6505-T 086-2020 双峰驼规模化养殖场建设技术规范
- 感染性疾病科各项规章制度及岗位职责
评论
0/150
提交评论