已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,IntroductiontoKalmanFilters,MichaelWilliams5June2003,2,Overview,TheProblemWhydoweneedKalmanFilters?WhatisaKalmanFilter?ConceptualOverviewTheTheoryofKalmanFilterSimpleExample,3,TheProblem,SystemstatecannotbemeasureddirectlyNeedtoestimate“optimally”frommeasurements,MeasuringDevices,Estimator,MeasurementErrorSources,SystemState(desiredbutnotknown),ExternalControls,ObservedMeasurements,OptimalEstimateofSystemState,SystemErrorSources,System,BlackBox,4,WhatisaKalmanFilter?,RecursivedataprocessingalgorithmGeneratesoptimalestimateofdesiredquantitiesgiventhesetofmeasurementsOptimal?ForlinearsystemandwhiteGaussianerrors,Kalmanfilteris“best”estimatebasedonallpreviousmeasurementsFornon-linearsystemoptimalityisqualifiedRecursive?Doesntneedtostoreallpreviousmeasurementsandreprocessalldataeachtimestep,5,ConceptualOverview,SimpleexampletomotivatetheworkingsoftheKalmanFilterTheoreticalJustificationtocomelaterfornowjustfocusontheconceptImportant:PredictionandCorrection,6,ConceptualOverview,Lostonthe1-dimensionallinePositiony(t)AssumeGaussiandistributedmeasurements,y,7,ConceptualOverview,SextantMeasurementatt1:Mean=z1andVariance=z1Optimalestimateofpositionis:(t1)=z1Varianceoferrorinestimate:2x(t1)=2z1Boatinsamepositionattimet2-Predictedpositionisz1,8,ConceptualOverview,Sowehavetheprediction-(t2)GPSMeasurementatt2:Mean=z2andVariance=z2Needtocorrectthepredictionduetomeasurementtoget(t2)Closertomoretrustedmeasurementlinearinterpolation?,prediction-(t2),measurementz(t2),9,ConceptualOverview,CorrectedmeanisthenewoptimalestimateofpositionNewvarianceissmallerthaneitheroftheprevioustwovariances,measurementz(t2),correctedoptimalestimate(t2),prediction-(t2),10,ConceptualOverview,Lessonssofar:,Makepredictionbasedonpreviousdata-,-,Takemeasurementzk,z,Optimalestimate()=Prediction+(KalmanGain)*(Measurement-Prediction),Varianceofestimate=Varianceofprediction*(1KalmanGain),11,ConceptualOverview,Attimet3,boatmoveswithvelocitydy/dt=uNaveapproach:ShiftprobabilitytotherighttopredictThiswouldworkifweknewthevelocityexactly(perfectmodel),(t2),NavePrediction-(t3),12,ConceptualOverview,BettertoassumeimperfectmodelbyaddingGaussiannoisedy/dt=u+wDistributionforpredictionmovesandspreadsout,(t2),NavePrediction-(t3),Prediction-(t3),13,ConceptualOverview,Nowwetakeameasurementatt3NeedtoonceagaincorrectthepredictionSameasbefore,Prediction-(t3),Measurementz(t3),Correctedoptimalestimate(t3),14,ConceptualOverview,Lessonslearntfromconceptualoverview:Initialconditions(k-1andk-1)Prediction(-k,-k)Useinitialconditionsandmodel(eg.constantvelocity)tomakepredictionMeasurement(zk)TakemeasurementCorrection(k,k)UsemeasurementtocorrectpredictionbyblendingpredictionandresidualalwaysacaseofmergingonlytwoGaussiansOptimalestimatewithsmallervariance,15,TheoreticalBasis,Processtobeestimated:,yk=Ayk-1+Buk+wk-1,zk=Hyk+vk,ProcessNoise(w)withcovarianceQ,MeasurementNoise(v)withcovarianceR,KalmanFilter,Predicted:-kisestimatebasedonmeasurementsatprevioustime-steps,k=-k+K(zk-H-k),Corrected:khasadditionalinformationthemeasurementattimek,K=P-kHT(HP-kHT+R)-1,-k=Ayk-1+Buk,P-k=APk-1AT+Q,Pk=(I-KH)P-k,16,BlendingFactor,Ifwearesureaboutmeasurements:Measurementerrorcovariance(R)decreasestozeroKdecreasesandweightsresidualmoreheavilythanpredictionIfwearesureaboutpredictionPredictionerrorcovarianceP-kdecreasestozeroKincreasesandweightspredictionmoreheavilythanresidual,17,TheoreticalBasis,18,QuickExampleConstantModel,MeasuringDevices,Estimator,MeasurementErrorSources,SystemState,ExternalControls,ObservedMeasurements,OptimalEstimateofSystemState,SystemErrorSources,System,BlackBox,19,QuickExampleConstantModel,Prediction,k=-k+K(zk-H-k),Correction,K=P-k(P-k+R)-1,-k=yk-1,P-k=Pk-1,Pk=(I-K)P-k,20,QuickExampleConstantModel,21,QuickExampleConstantModel,ConvergenceofErrorCovariance-Pk,22,QuickExampleConstantModel,LargervalueofRthemeasurementerrorcovariance(indicatespoorerqualityofmeasurements),Filterslowertobelievemeasurementsslowerconvergence,23,References,Kalman,R.E.1960.“ANewApproachtoLinearFilteringandPredictionProblems”,TransactionoftheASME-JournalofBa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年南阳职业学院单招职业倾向性测试题库带答案解析
- 2026年宁德职业技术学院单招职业倾向性考试必刷测试卷及答案解析(夺冠系列)
- 2026年商丘学院单招职业倾向性考试题库及答案解析(夺冠系列)
- 2026年成都工业职业技术学院单招职业倾向性考试必刷测试卷附答案解析
- 垃圾分类与环境保护
- 房屋打井协议书样本
- 房屋拆迁认购协议书
- 房屋整修施工协议书
- 房屋界线建造协议书
- 房屋置换产权协议书
- 真假食材知识培训课件
- 2025年互联网医院运营模式在医疗旅游市场中的拓展可行性研究报告
- 通识教育课题申报书
- (2025秋新版)湘科版二年级上册科学全册教学设计(教案)
- 2025至2030中国抗体药物结合疗法行业调研及市场前景预测评估报告
- 市政管道施工安全培训课件
- 防火防静电防冻知识培训课件
- 网络强国思想课件
- 快消品销售团队激励方案及执行细节
- DB11∕T 500-2024 城市道路城市家具设置与管理规范
- 西游记三十六回课件
评论
0/150
提交评论