第二课数码相机原理.ppt_第1页
第二课数码相机原理.ppt_第2页
第二课数码相机原理.ppt_第3页
第二课数码相机原理.ppt_第4页
第二课数码相机原理.ppt_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数码摄影流程,数码相机的革命性在于它抛弃了传统的感光胶卷,它所拍摄的相片可以方便地被进行处理并输出,甚至不用通过任何中间的处理设备而直接输出,从而实现了真正意义上的“即拍即得”。,图像的输入,我们可以将图像或其它的数据输入计算机系统。你最熟悉的输入设备可能就是键盘了,然而有更多的输入设备可供你使用:如鼠标、手写板、语音识别系统、数码像机、扫描仪等。它们当中如数码像机、扫描仪可以直接提供数字格式的图片进行处理。你也可以通过一些视频捕捉设备捕捉电视、摄像机等的图像进行处理。,二.图像的处理,一旦有了一幅数字格式的图像,你就可以在你的计算机系统上很方便地对其进行编辑处理。你可以使用PHOTOSHOP等图像处理软件对其进行修改,添加文字或制作特殊效果。你也可以将图像缩小以便方便地通过电子邮件发送给你的亲朋好友。,输出图像,当你获得了满意的数字图像后,可以将其保存下来,以便日后使用。如果你需要相片,可以通过打印机将其打印出来或送到输出中心制成胶片进行大量印刷。你还可以将其制成个人电子影集随时观赏。如果有自己的国际互联网站,你可以将你相片放置到你的网址上,让全世界的人都可以看见你的尊容。,胶片的成像原理,每种胶片(包括彩色胶片)都包括两个基本组成部分:一个单层的或多层的感光乳剂层、一个感光乳剂层的支持体片基。乳剂是由对光敏感的微细颗粒悬浮在明胶介质中而成。胶片上的明胶与某些食品所用明胶类似。在明胶中悬浮着的光敏物质是卤化银颗粒。这种颗粒如此微细,只有在高倍显微镜下才能观察到。在1平方英寸通常的感光胶片乳剂中,卤化银晶体的含量约达400亿个之多!,卤化银晶体具有一经曝光其结构就发生变化的特性。这一化学性能变化的机理对我们并非重要,其变化的终结效果才是最重要的。这一变化是怎样产生的呢?当你拍摄时,光线通过相机的镜头射到胶片的乳剂层上,当光线到达卤化银晶体时,这些晶体发生结构性变化,并与邻近也受到光线照射的卤化银晶体相互聚结起来。这种因卤化银晶体聚结而形成的团块仍然是极其微细的。乳剂层接受到的光量愈多,就有更多的晶体聚结在一起,光量愈少,晶体的变化和聚结也愈少。没有光落到的乳剂上也就没有晶体的变化和聚结。这就是说不同强度的光照射到胶片上,胶片乳剂层的微观领域就有不同数量的晶体发生结构变化和相互聚结。胶片一经曝光,立即产生潜影一种看不见的影像。必须将胶片进行显影操做才能使潜影转化为可见的牢固影像。当胶片显影,结构已发生变化的卤化银晶体便转化为黑色金属银颗粒的聚结体,从而产生影像负像。胶片上那些没有感光的,也就是没有发生结构变化的晶体即被一种称作定影剂的化学品洗去,使这些部分呈现浅灰或透明。结果是负像上黑暗(厚的)部分就是曝光较多部分;明亮(薄的)部分就是曝光较少部分;全透明部分就是没有受到光照射的部分。这就是黑白胶片记录影像的基本过程。,数码的成像原理:,目前数码感光器件分为CCD和CMOS两大类。CCD称为电荷耦合半导体器件,CMOS称为互补型金属氧化物场效应器件,它们都是半导体器件,其工作原理没有本质的区别。它们在数码照相机中的作用是把影像的光信号转变为电信号并分别寄存起来,在外加扫描信号的作用下传输出去,最后经过各种运算转换为图像的数码文件。,光线透过镜头射入半导体,光子被半导体吸收,这样光学图像在感光单元上转换成为与光学图像中各相应像素上光照成正比的电荷包,每个电荷包就是图像的亮度信息,最后通过暂存区和信号读出寄存器把信号通过中央处理器进行信号处理后传输到存储器。一个好的影像传感器如果能够使得感光单元占据更多的比表面积,那么它的效率越高,再生像的准确度也越高。数码图像传感器利用感光单元来接受光线,但对光线的色彩没有识别能力。那怎么让它感知色彩呢,现在的常规做法是在每个图像传感器单元的前面加上滤色镜,这又可以分为原色RGB滤镜和补色CMYG滤镜两种,这种技术被称为马赛克技术(Mosaic)。,由胶片和数码成像的原理可以看出,胶片是通过光化学反应产生潜像,这个潜像的生成不存在人为的干扰因素,也就是说过程比较自然。而数码成像过程,插值算法是关键的一环,所以随着算法设计的不断进步,数码的拟真度会越来越高(当然感光器件本身的进步也同样重要)。就和其他领域模拟和数码的更迭一样,当数码精细到一定程度以后(超过人所能分辨的界限),就可以认为是高保真地还原了。,但Mosaic技术存在以下的缺陷:分辨率无法持续提高,辨色能力差以及制作成本高昂。由于色彩是依靠插值计算出来的,所以对于十分细微的色彩变化,容易出现丢失现象,这就是数码图像看起来层次不够细腻、色彩不够厚重的原因之一。此外,由于数码感光原件是规则排列的,这就存在一个空间频率问题,当像素的空间频率与影像中条纹的空间频率接近的时候,就会产生摩尔纹。目前缓解的办法是在感光元件的前面安装低通滤波器滤除影像中较高空间频率部分,但这样又会导致图像锐度的降低。而胶片的感光颗粒是无规则排列的,也就没有固定的空间频率,所以也就不会出现摩尔纹。,再让我们来比较一下它们的响应曲线:我们可以看到胶片的线性区相对稍稍短一点,但是特性曲线的肩部趋缓,有个拖了个长长尾巴的非线性区,表明对高光有一定的抑制即可部份表现高光处的细节。而CCD的线性工作区稍微长一点,但是截止得很突然,一冲就上去了,毫无抑制能力,见到高光就是死白这是与胶片的最大不同。,如果要精确测量光强,我们希望感光材料工作在线性区,这个用途使用CCD好。但从摄影的角度来说,胶片确实比CCD好,好就好在那个长长的非线性区能够保存大量亮部的细节,虽然这些细节反应出来的明暗其实是有误差的。数字相机一旦过曝,信号就立刻饱和,而且是没有任何余地的那种饱和,因此数码高光部表现比彩负要差,非常容易过冲死白。而是胶片过曝一点,还是有细节存在,虽然响应已经不是线性的了,但是有总比没有的强,负片高光明显有缓冲,即使过曝无细节也不至於全脱色。,数码相机分类,分为:单反相机(专业)消费类数码相机(业余准专业)单反数码相机指的是单镜头反光数码相机,这是单反相机与其它数码相机的主要区别。消费类数码相机指机身和镜头一起的数码相机.,单反数码相机的一个很大的特点就是可以交换不同规格的镜头,这是单反相机天生的优点,是普通数码相机不能比拟的。,消费类数码相机分为:一般相机准专业相机一般数码相机优点:时尚的外观、大屏幕液晶屏、小巧纤薄的机身,操作便捷。缺点:手动功能相对薄弱、超大的液晶显示屏耗电量较大、镜头性能较差。,准专业数码相机优点:手动功能相强、成像质量好,操作便捷、镜头性能较好。缺点:不能更换镜头,设置内容较多。,专题一数码相机镜头上的标识,尼康的尼柯尔镜头作为日本最大的光学仪器制造厂,尼康已有60多年制造镜头的历史。尼柯尔(Nikkor)一直以锐利的成像和高反差效果闻名于世,特别受新闻工作者青睐,有“新闻的尼康,体育的佳能”之说。作为目前尼康非单反系列数码相机中的旗舰机型CoolPix8700,使用的就是尼柯尔8倍光学变焦ED镜头。所谓ED,就是采用了Extra-LowDispersionGlass特低色散玻璃镜片的镜头,能够大大减轻在长焦镜头中经常发生的红光与蓝光无法聚焦于同一平面的色散现象,保证了能够实现出色的色彩还原效果。,佳能红圈L镜头作为与尼康齐名的相机制造厂商,佳能的镜头自然也毫不逊色,早在1946年就成功地制成了佳能第一款镜头,目前,佳能单反相机所使用的EF系列镜头规格之全,是其他所以相机厂商都无法媲美的。每当体育大赛,我们都可以看到场边一支支白色的佳能“大炮筒”。L是Luxury豪华的首字母,是佳能专业镜头的标志,在镜头外环有红色的圈。和消费级镜头相比,L头带有研磨非球面镜片、UD(低色散)、SUD(超低色散)或者Fluorite(萤石)镜片,这些是镜头出色的光学质量的重要基础。通常镜头的构造质量也要优秀很多,价格也高很多,但成像质量非常优秀。在非单反顶级机型Pro1上,我们看到了使用萤石镜片的红圈镜头。尽管成本很高,但萤石镜片能够显著降低色散,所以在高档长焦镜头中经常使用。应用了如此高档的镜头,Pro1的成像质量得到国内外媒体的一致好评,价格也是800万同等机型中价格最高的就不足为怪了。,美能达GT/HEXANON镜头在顶级机型DiMAGEA2和其他一些高端机型如A1/7Hi/7i/7,甚至是一些袖珍相机上,我们都能看到红色字母标记的GT字样。GT镜头是从美能达传统单反相机的专业级大口径G系列镜头演变而来。GT镜头是授予以严格的判定标准筛选出的数码相机专用高级镜头的名称,它是一种能实现超精细,浓缩了美能达公司独有的,将色差和变形散光等控制在最低限度的图像处理关键技术(GT=GLensTechnology)而制成的不同凡响的高画质镜头。而在合并后的柯尼卡美能达以及合并前的柯尼卡数码相机上,如G系列相机上我们会看到GTHEXANON字样,说到HEXANON就不得不提到柯尼卡的镜头。早在1928年,柯尼卡就成为了日本日本第一家制造日本镜头的公司,比尼康还要早三年,后来一直应用于柯尼卡的高档小型相机上并备受推崇。,奥林巴斯ZUIKODIGITAL镜头“ZUIKODIGITAL”是奥林巴斯为其新的“4/3系统”数码单反相机而设计的专业规格的专用互换镜头。奥林巴斯的前身高千穗制作所于1936年推出的第1号相机“OLYMPUS”上安装的镜头是“ZUIKO”镜头。并在后来的奥林巴斯单反相机OM系列广泛应用并广受好评。ZUIKO镜头组以具有锐利的分辨率著称,具有非常好的细节表现能力。与胶卷相机镜头相比,数码相机镜头要求有更高的表现能力.,宾得的SMC镜头宾得作为日本五大相机制造商,其镜头素质也非等闲之辈。提起PENTAX的镜头,就不能不提它的SMC(超级多层镀膜)技术。由于光线每一次通过空气玻璃接触面都会发生折射和反射,所以在通过由多片镜头组成的镜头时,如果不保证很高的增强透光率,那么不只光强大大降低,反差和色彩还原也难以得到保证。为了增强透过率,宾得当年率先开发了SMC(Super-MultiCoating)技术,采用化学镀膜法在镜片上镀上七层镀膜,使得光线的透过率提高到99.8%。PENTAX于1971年开始应用SMC技术,在此以后凡是印有SMC字样的宾得镜头,都是镀过七层膜的。尽管目前很多厂商都已掌握了类似技术,但宾得在这项技术上还是一直居于领先地位。,索尼相机上的卡尔蔡司镜头卡尔蔡司公司是全球最古老的科技企业之一,于1846年在德国耶拿创立,目前总部设在德国。卡尔蔡司公司可以说是精密光学仪器领域的领头羊,能够制造包括相机镜头、实验室设备、天文馆投影机、交通及医学用光学器材等一系列光电产品。了解卡尔蔡司公司的人深知,该公司能从工业革命伊始发展到今天的规模,完全得益于始终固守其最擅长的光学仪器领域,并不断创新,提高技术水平。消费电子巨头索尼公司正是看中了这一点,选择了卡尔蔡司镜头作为其数码相机数码摄像机的“眼睛”。而其中带有红色T*标志是卡尔蔡司镜头是经过特殊镀膜处理、为避免镜头表面反光造成“耀光”现象而专门设计的,是卡尔蔡司纵横光学界多年不倒的看家宝。目前索尼仅在顶级机型DSC-F828上采用。而另一著名相机厂商康太克斯在其高档小型数码相机上也使用了T*镜头。,松下相机上的徕卡镜头熟悉摄影器材的人没有不知道德国Leica大名的。徕卡不仅制造了世界上第一台35毫米相机,更是以其精湛的技术和工艺,获得了众多世界一流摄影师的高度赞扬,确立了徕卡相机和徕卡镜头在摄影界内的崇高地位。松下与徕卡的合作始于2000年,当时松下推出了世界上首次配备徕卡Dicomar镜头的数码摄录一体机,后来,松下和徕卡又将举世闻名的Summicron、Elmar和Elmarit镜头制造技术结合数码相机特点,推出了松下和徕卡数码相机上专用的DCVARIO-SUMMICRON和DCVARIO-ELMARIT镜头,这些镜头继承了徕卡标志性的浓厚感和色彩丰富的传统,为徕卡迷转向数码领域开辟了道理。,三星及柯达相机上的施奈德镜头施耐德在传统相机领域里原本以制造中大画幅座机和放大用的镜头为主,其镜头堪称是座机中的镜中之王,虽然各自专注领域略有不同,但无论是在业内的资历还是镜头的制作工艺,施奈德都不输与蔡司。所以韩国的著名传统消费电子厂商三星和著名的传统影像器材大厂柯达不约而同地选择了施奈德作为合作伙伴就不足为怪了。在三星的高端V系列和柯达所有的非单反数码相机,我们都可以看到SchneiderKREUZNACH的标志,是其优异成像品质是有力的保障。,最后还得说说佳能的普通镜头和富士的富士珑镜头,虽然这两款镜头没有上面那些红的那么大红大紫,不过确是非常不错,性价比很高的镜头。先说说佳能,佳能canon镜头不光被除PRO-1的所有佳能民用级数码相机所使用,还被其他一些品牌的数码相机所使用。比如卡西欧600W像素的P600就是使用了佳能canon镜头。而A系列、S系列、G系列都是使用的佳能普通镜头。,专题二数码相机的存储卡,数码相机将图像信号转换为数据文件保存在磁介质设备或者光记录介质上。如果说数码相机是电脑的主机,那么存储卡相当于电脑的硬盘。存储记忆体除了可以记载图像文件以外,还可以记载其他类型的文件,通过USB和电脑相连,就成了一个移动硬盘。,用于存储图像的介质越来越多,如何选择合适的存储介质对数码摄影者尤其是从事数码摄影职业的专业人士来说,是很重要的一件事。选择存储设备时要考虑到:.设备与可转移介质的价格;.可存储的信息量;.存储介质的使用寿命;.从磁盘上读写信息的速度,即由驱动器决定的数据转移速度。市面上常见的存储介质有CF卡、SD卡、MMC卡、SM卡、记忆棒(MemoryStick)、xD卡和小硬盘MICRoDRIVE)。,SD卡,SD卡就是SecureDigitalCard安全数码卡,是由日本松下公司,东芝公司和美国SANDISK公司共同开发研制的,具有大容量,高性能,尤其是安全等多种特点的多功能存储卡。它比MMC卡多了一个进行数据著作权保护的暗号认证功能(SDMI规格)。现多用于MP3,数码摄像机,电子图书,微型电脑,AV器材等。大小尺寸比MMC卡略厚一点,为32mm24mm2.1mm,容量则要大许多。另外此卡的读写速度比MMC卡要快4倍,达2MB/秒。同时于MMC卡兼容,SD卡的插口大多支持MMC卡。,CF卡,CF卡的标准大小为43mmx36mmx3.3mm,50Pins。体积约PCMCIA卡的1/4,重量小于12g,并支持3.3V和5V两种操作电压。由于CF的体积相对较大,在当今的时尚便携的数码产品中已经很少采用了,而多用于要求容量极大、速度极高的专业产品领域,主流的单反数码相机和高端消费相机基本上都支持CF卡,以获取高容量预告速度。同时,高速度、高容量、高稳定性的CF接口产品依然一浪接一浪地推出,并且由于CF卡相对庞大的体积,使得当今闪存卡上的容量纪录常在CF卡寻求突破口。可以说,CF接口的存储卡代表了闪存芯片最高的性能与容量。,xD卡,xD卡是由日本奥林巴斯株式会社和富士有限公司联合推出的一种新型存储卡,有极其紧凑的外形,只有一张邮票那么大,外观尺寸仅为20251.7mm,重量仅为2克重,在存储卡领域可以算得上是最小的了。,SDHC,SDHC是“HighCapacitySDMemoryCard”的缩写,即“高容量SD存储卡”。2006年5月SD协会发布了最新版的SD2.0的系统规范,在其中规定SDHC是符合新的规范、且容量大于2GB小于等于32GB的SD卡。SDHC最大的特点就是高容量(2GB-32GB)。另外,SD协会规定SDHC必须采用FAT32文件系统,这是因为之前在SD卡中使用的FAT16文件系统所支持的最大容量为2GB,并不能满足SDHC的要求。,MMC卡,MMC(MultiMediaCard,多媒体存储卡)由SanDisk和Siemens公司在1997年发起,与传统的移动存储卡相比,其最明显的外在特征是尺寸更加微缩只有普通的邮票大小(是CF卡尺寸的1/5左右),外形尺寸只有32mm24mm1.4mm,而其重量不超过2g。这使其成为世界上最小的半导体移动存储卡,它对于越来越追求便携性,记忆棒,MemoryStick(记忆棒)是索尼(SONY)与卡西欧(CASIO),夏普(SHARP)等共同开发出来的一种超微体集成化电路的数字存储介质,主要用于SONY自家品牌的产品中。它分为MemoryStick,MemoryStickPRO,MemoryStickDuo以及MemoryStickPRODuo四种。,像素的源头分辨率,分辨率是用于度量图像内数据量多少的一个参数。通常表示成ppi(每英寸像素Pixelperinch)和dpi(每英寸点)。包含的数据越多,图形文件的长度就越大,也能表现更丰富的细节。但更大的文件也需要耗用更多的计算机资源,更多的内存,更大的硬盘空间等等。在另一方面,假如图像包含的数据不够充分(图形分辨率较低),就会显得相当粗糙,特别是把图像放大为一个较大尺寸观看的时候。所以在图片创建期间,我们必须根据图像最终的用途决定正确的分辨率。这里的技巧是要首先保证图像包含足够多的数据,能满足最终输出的需要,同时也要适量,尽量少占用一些计算机的资源。,拿2048X1536X16M来说,2048X1536就是说在宽度方向有2048个像素,在高度方向有1536个像素。2048X1536=3145728,我们就称其为300万像素。而后面的16M是指颜色深度。每个像素是有颜色的,而每像素的颜色用3个BYTE来记录,分别是红,绿,蓝。每BYTE可以记录256个层次,因此共可记录256X256X256=16777216种不同的颜色,即16M,也称为24位颜色深度。因此,如果按RGB颜色记录一个2048X1536像素的图像文件,就要2048X1536X3=9437184个BYTE,即9MB,再加上文件头等其他信息,最终要大于9MB。,不过数码相机平时多数用JPG格式,这是一种有失真的,压缩比较大的图像文件格式,一般情况下,2048X1536像素的JPG文件根据其压缩比的不同文件尺寸也不同,大约在1-2MB左右。同样也可以计算出1600X1200X16M等其他像素的文件大小。由此可见,2048X1536X16M与1600X1200X16M的照片,包含的像素点的数量是不一样的,也就是说其信息含量是不一样的。如果用同样的输出分辨率来打印照片,得到的照片大小是不一样的,反过来,如果输出同样大小的照片,照片上单位长度里的像素点数是不一样的,也就是照片的细腻程度是不一样的。,专题三数码相机的像素,像素,译自英文Pixel,图像元素(Pictureelement)的简称,是单位面积中构成图像的点的个数。每个像素都有不同的颜色值。单位面积内的像素越多,分辨率越高,图像的效果就越好。像素有时被简称为pel(pictureelement的缩写)。数码相机的像素分为最大像素数和有效像素数。,最大像素:英文名称为MaximumPixels,所谓的最大像素是经过插值运算后获得的。插值运算通过设在数码相机内部的DSP芯片,在需要放大图像时用最临近法插值、线性插值等运算方法,在图像内添加图像放大后所需要增加的像素。插值运算后获得的图像质量不能够与真正感光成像的图像相比。在市面上,有一些商家会标明“经硬件插值可达XXX像素”,这也是相同的原理,只不过在图像的质量和感光度上,以最大像素拍摄的图片清晰度比不上以有效像素拍摄的。最大像素,也直接指CCD/CMOS感光器件的像素,一些商家为了增大销售额,只标榜数码相机的最大像素,在数码相机设置图片分辨率的时候,的确也有拍摄最高像素的分辨率图片,但是,用户要清楚,这是通过数码相机内部运算而得出的值,再打印图片的时候,其画质的减损会十分明显。,有效像素:有效像素数英文名称为EffectivePixels。与最大像素不同,有效像素数是指真正参与感光成像的像素值。最高像素的数值是感光器件的真实像素,这个数据通常包含了感光器件的非成像部分,而有效像素是在镜头变焦倍率下所换算出来的值。以美能达的DiMAGE7为例,其CCD像素为524万(5.24Megapixel),因为CCD有一部分并不参与成像,有效像素只为490万。数码图片的储存方式一般以像素(Pixel)为单位,每个象素是数码图片里面积最小的单位。像素越大,图片的面积越大。要增加一个图片的面积大小,如果没有更多的光进入感光器件,唯一的办法就是把像素的面积增大,这样一来,可能会影响图片的锐力度和清晰度。所以,在像素面积不变的情况下,数码相机能获得最大的图片像素,即为有效像素。用户在购买数码相机的时候,通常会看到商家标榜“最大像素达到XXX”和“有效像素达到XXX”,那用户应该怎样选择呢?在选择数码相机的时候,应该注重看数码相机的有效像素是多少,有效像素的数值才是决定图片质量的关键。,型号EX-Z1000上市时间2006数码相机类型卡片数码相机总像素1037万像素有效像素1010万像素,部分数码相机的像素设置与可冲印最佳照片尺寸对照表,可以根据自己希望冲印照片的大小来选择使用。如果希望自己的数码照片冲印为一般规格(目前主流数码冲印为5R,即5x7英寸),那么300万像素已经是足够了。现在常用的数码相机象素数通常在600万像素到1000万像素。选择数码相机像素越高的模式拍出的照片在不失真情况可可冲印的最大尺寸也比较大,不过从照片清晰度来说,300万像素以上的数码照片没有差异。因此在外出旅游期间为了节约数码相机存储卡的空间,并不一定要按照最大像素设置来拍摄照片。比如500万像素的数码相机也可以设置为300万像素拍照,这样同样的存促卡可以拍出数量更多的照片。,数码相机的像素设置与冲印照片尺寸对照表:,专题四数码相机变焦,数码相机分为光学变焦和数码变焦两种光学变焦英文名称为OpticalZoom,数码相机依靠光学镜头结构来实现变焦。数码相机的光学变焦方式与传统35mm相机差不多,就是通过镜片移动来放大与缩小需要拍摄的景物,光学变焦倍数越大,能拍摄的景物就越远。,光学变焦是通过镜头、物体和焦点三方的位置发生变化而产生的。当成像面在水平方向运动的时候,如下图,视觉和焦距就会发生变化,更远的景物变得更清晰,让人感觉像物体递进的感觉。,如今家用数码相机的光学变焦倍数大多在2倍5倍之间,即可把10米以外的物体拉近至5-3米近;也有一些数码相机拥有10倍的光学变焦效果。家用摄录机的光学变焦倍数在10倍22倍,能比较清楚的拍到70米外的东西。拍摄距离(m)/变焦倍数(35x为基准)=拍摄画面宽度(cm),“数字变焦DigitalZoom”是数码相机的独有特异功能。早期的数字变焦功能常见于一些使用固定焦距的数码相机产品。现在则延伸到顶级机种也配备了这项功能。数字和光学变焦的不同在于,光学变焦是利用不同镜头组的搭配,产生焦距变化而达成将远方景物的光线拉近至相机内的目的,画质不失真。数字变焦则是利用近似于数字影像软件中的“剪裁”功能,对中心影像做一格放的动作。与光学变焦不同,数字变焦是在感光器件垂直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论