2019_2020学年高中数学第3章数系的扩充与复数的引入3_1_1数系的扩充和复数的概念练习新人教A版.docx_第1页
2019_2020学年高中数学第3章数系的扩充与复数的引入3_1_1数系的扩充和复数的概念练习新人教A版.docx_第2页
2019_2020学年高中数学第3章数系的扩充与复数的引入3_1_1数系的扩充和复数的概念练习新人教A版.docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3-1-1 数系的扩充和复数的概念基础要求1设集合C复数,R实数,M纯虚数,那么()ARMCBRM0CRCRC DCCRM解析:由复数的分类可知,复数由实数和虚数组成,A错;因为RM,B错;因为CR即为虚数集与C的交集仍为CR,D错答案:C2设a,bR.“a0”是“复数abi是纯虚数”的()A充分而不必要条件 B必要而不充分条件C充分必要条件 D既不充分也不必要条件解析:如果b0,此时abi0是实数而不是纯虚数,因此不是充分条件;如果abi是纯虚数,由定义其实部为零,虚部不为零,这样可以得到a0,因此是必要条件,故选B.答案:B3若复数(2x25x2)(x2x2)i为虚数,则实数x满足()Ax Bx2或Cx2或x1 Dx1且x2解析:若复数为实数,则x2x20.(x1)(x2)0即x1或x2.若复数为虚数,即不为实数,x1且x2.答案:D4下列n的取值中,使in1(i是虚数单位)的是()An2 Bn3Cn4 Dn5解析:因为i41,故选C.答案:C5设z是复数,(z)表示满足zn1的最小正整数n,则对虚数单位i,(i)()A2B4C6D8解析:(i)的含义是求最小的正整数n使得in1.选B.答案:B6已知复数z(52i)2(i是虚数单位),则z的实部为_解析:(52i)22520i4i22120i.答案:217若(2x1)iy(3y)i,其中x,yR,则x_,y_.解析:根据复数相等的充要条件答案:48若(m2m)(m23m2)i是纯虚数,则实数m的值为_解析:由纯虚数概念知m0.答案:0能力要求1若复数z(x21)(x1)i为纯虚数,则实数x的值为()A1 B0C1 D1或1解析:纯虚数则实部为零,虚部不为零,即则x1.答案:A2若方程x22ix(2mi)0有一实根则实数m的值为()A8B2C2D2解析:x,mR,方程化为x22(2xm)i0得:m2.选D.答案:D3已知集合M1,2,(m23m1)(m25m6)i,集合P1,3且MP3,则实数m的值为()A1 B1或4C6 D6或1解析:由题意知3M,即(m23m1)(m25m6)i3从而m1.答案:A41ii2i2 009_.解析:i4ni4n1i4n2i4n30原式1(ii2i3i4)(i5i6i7i8)(i2 005i2 006i2 007i2 008)i2 0091i2 0091i.答案:1i5已知mR.复数z(m22m3)i,问当m为何值时(1)z是实数?(2)z是虚数?(3)z是纯虚数?解:(1)若z是实数有,m3(2)若z是虚数有m1且m3(3)若z是纯虚数有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论