



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【巩固练习】1已知a、b是异面直线,直线ca,则c与b( ) A一定是异面直线 B一定是相交直线、 C不可能是相交直线 D不可能是平行直线2如果两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有( ) A12对 B24对 C36对 D48对3如图,点P、Q、R、S分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ与RS是异面直线的一个图是()4空间四边形的对角线互相垂直且相等,顺次连接这个四边形各边中点,所组成的四边形是( ) A梯形 B矩形 C平行四边形 D正方形5(2016春 福建厦门月考)以下四个结论:若,则a,b为异面直线;若,则a,b为异面直线;没有公共点的两条直线是平行直线;两条不平行的直线就一定相交其中正确答案的个数是( )A0个 B1个 C2个 D3个6若三个平面两两相交,则它们交线的条数是( ) A1 B2 C3 D1或37.正六面体中,与面的对角线异面的棱有 条8已知a,b,c是直线,给出下列命题:若ab,bc,则ac;若ab,bc,则ac;若ab,bc,则ac;若a与b异面,则至多有一条直线与a,b都垂直其中真命题是_(写出所有正确命题的序号)9一个平面内有无数条直线平行于另一个平面,那么这两个平面的位置关系是_10在正方体中,E,F分别为棱,的中点,则在空间中与三条直线,EF,CD都相交的直线有_条11(2016 成都金牛区月考)如图,已知长方体ABCDABCD中,AA=2,(1)哪些棱所在直线与直线BA是异面直线?(2)直线BC与直线AC所成角是多少度?12三个平面,如果,且直线,(1)判断c与的位置关系,并说明理由;(2)判断c与a的位置关系,并说明理由13如右图,等腰直角三角形ABC中,A=90,DAAC,DAAB,若DA=1,且E为DA的中点求异面直线BE与CD所成角的余弦值【答案与解析】1【答案】D 【解析】 若cb,则由ca,得ab,与已知a、b异面矛盾故应选D2【答案】B 【解析】 六条侧棱不是异面直线,一条侧棱与底面六边形的两条边相交,与另四条边异面,这样异面直线一共有46=24(对),故应选B3【答案】C【解析】A,B中PQRS,D中直线PQ与RS相交(或RPSQ),即直线PQ与RS共面,均不满足条件;C中的直线PQ与RS是两条既不平行,又不相交的直线,即直线PQ与RS是异面直线故选C4【答案】D 【解析】 根据三角形中位线的性质及正方形的定义判断5【答案】A【解析】满足若的直线a,b可能是异面直线,可能是平行直线也可能是相交直线所以错误根据直线和平面的位置关系可知,平面内的直线和平面外的直线,可能是异面直线,可能是平行直线,也可能相交,所以错误在空间中,没有公共点的两条直线是平行直线或者是异面直线,所以错误在空间中,两条不平行的直线可能是异面直线,所以错误故选A6【答案】D 【解析】 如下图,当三平面的位置关系如下图(1)时,有三条交线;当三平面的位置关系如下图(2)时,有一条交线 7. 【答案】 6【解析】画出正方体的图形,即可数出。8【答案】【解析】根据平行直线的传递性可知正确;若ab,bc,则a与c可以平行也可以相交或异面,不正确;易知正确;与两条异面直线都垂直的直线有无数条,不正确故填9【答案】平行或相交 【解析】结合实例分析验证10【答案】无数【解析】如图示,在EF上任取一点M,直线与M确定一个平面,这个平面与CD有且仅有1个交点N,当M取不同的位置时就确定不同的平面,从而与CD有不同的交点N,而直线MN与这3条异面直线都有交点故填无数11【答案】(1)BC、CC、CD、CD、DD、AD;(2)45【解析】(1)由异面直线的定义知与BA异面的直线有:BC、CC、CD、CD、DD、AD(2)此几何体为长方体BCBCBC与AC所成的角等于BC与AC所成的角又AB=AD四边形ABCD是正方形BC与AC所成的角为ACB=45BC与AC所成的角等于4512【解析】(1)c因为,所以与没有公共点,又c,所以c与无公共点,则c (2)ca因为,所以与没有公共点,又,则,且,所以a,b没有公共点由于a,b都在平面内,因此ab,又cb,所以ca13【解析】根据异面直线所成角的定义,我们可以选择适当的点,分别引BE与DC的平行线,换句话说,平移BE(或CD)设想平移CD,沿着DA的方向,使D移向E,则C移向AC的中点F,这样BE与CD所成的角即为BEF或其补角,解EFB即可获解取AC的中点F,连接BF、EF,在ACD中,E、F分别是A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厚植新质生产力土壤
- 民族弹拨乐器课件
- 2025年传染病防治知识检测综合试卷答案及解析
- 新质生产力黑龙江进展
- 2025年疼痛管理知识应用练习试卷答案及解析
- 变形及胡克定律
- 2025年麻醉科急救抢救技能测验纲要答案及解析
- 民族团结特色课件
- 2025年急诊科重症监护护理论述题答案及解析
- 民族团结教育条例课件
- 2025-2026学年人教鄂教版(2017)小学科学四年级上册教学计划及进度表
- 中医家族传承政策解读
- 体育办公室管理制度
- 古村落传统建筑保护与改造的探索
- 2025年乡村振兴考试题及答案
- 燃气智慧燃气行业数字化转型
- 光伏电站建设安全总监岗位职责
- 报废汽车回收拆解企业技术规范
- 特种设备重大事故隐患判定准则试题及答案
- 三级安全教育试题及答案
- 脱硝培训试题一及答案
评论
0/150
提交评论