正弦稳态分析.ppt_第1页
正弦稳态分析.ppt_第2页
正弦稳态分析.ppt_第3页
正弦稳态分析.ppt_第4页
正弦稳态分析.ppt_第5页
已阅读5页,还剩101页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

7正弦稳态分析,71正弦量72正弦量的相量表示法73正弦稳态电路的相量模型74阻抗和导纳75正弦稳态电路的相量分析法76正弦稳态电路的功率77三相电路78非正弦周期电路的稳态分析,本章研究线性动态电路在正弦电源激励下的响应。,线性时不变动态电路在角频率为的正弦电压源和电流源激励下,随着时间的增长,暂态响应消失,只剩下正弦稳态响应,电路中全部电压电流都是角频率为的正弦波,电路处于正弦稳态。,满足这类条件的动态电路(渐近稳定电路)通常称为正弦电路或正弦稳态电路。,正弦稳态分析的重要性:(1)正弦信号是最基本的信号,它容易产生、加工和传输;(2)很多实际电路都工作于正弦稳态。例如电力系统的大多数电路。(3)用相量法分析正弦稳态十分有效。(4)已知电路的正弦稳态响应,可以得到任意波形信号激励下的响应。,分析正弦稳态的有效方法相量法。,71正弦量,正弦量按正弦规律随时间变化的物理量。,7-1-1正弦量的三要素,函数式表示:,Fm振幅;,角频率;rad/s,t+相位;弧度(rad)或度();初相位。|,波形图表示如下(以电流为例):,f频率;赫(Hz)=2f,T周期;秒(s)T=1/f,(a)0(b)=0(c)0时,表明i1(t)超前i2(t),超前的角度为。当=1-20时,Z0,端口电压超前电流,网络呈感性,电抗元件可等效为一个电感;,当X0,端口电流超前电压,网络呈容性,电纳元件可等效为一个电容;,当B0,电压超前于电流,电路呈感性,等效为R串联电感;,当X=XL-XC0,电流超前于电压,电路呈容性,等效为G并联电容;,当B=BC-BL0时,Y0,电压超前于电流,电路呈感性,等效为G并联电感;,当B=BC-BL=0时,Y=0,电压与电流同相,电路呈电阻性,等效为G。,例12求:u(t),iR(t),iL(t),iC(t)。已知:,解相量模型如图(b)。等效导纳:,求相量电压:,电流相量,时间表达式,相量图如图(c)所示。从中看出各电压电流的相量关系,例如端口电流的相位超前于端口电压相位36.9,RLC并联单口网络的端口特性等效于一个电阻与电容的并联,该单口网络具有电容性,75正弦稳态的相量分析,一画电路的相量模型,相量法分析正弦稳态的主要步骤:,1,将时域模型中各正弦量用相应的相量表示在电路图上。,2,时域模型中RLC元件的参数,用相应的阻抗(或导纳)表示。,二根据KCL、KVL和元件VCR相量形式,及一般分析方法列电路方程,求解响应的相量表达式。,三写出相应的时间表达式。,正弦稳态电路分析方法,相量形式的基尔霍夫定律和欧姆定律与电阻电路中同一定律的形式完全相同,其差别仅在于电压电流用相应的相量替换,电阻和电导用阻抗和导纳替换。因此,分析电阻电路的方法完全可以用到正弦稳态电路的分析中来。如:等效变换,各种一般分析法和网络定理等。,例13用网孔法、节点法和戴维南定理求i2(t)。已知:,解:相量模型如图(b)所示,,设网孔电流如右图,直接列出网孔方程,代入,得方程,解得,1、网孔分析,列出节点电压方程,代入,解得,2、节点分析,(1)由图(c)电路求端口的开路电压。列回路方程:,解得,3戴维南定理求,(2)加流求压法,求图(d)输出阻抗Zo。,由(1)、(2)得,代入式(3)得,由图(e)得,解:利用迭加定理、线性、互易定理,(a),由互易形式二,得:,由线性,得图(b)中单独作用时:,由叠加得图(b)中和共同作用时:,例15试求电流i1(t)。已知:,解:相量模型如图(b)所示,其中,列图(b)相量模型的KCL和KVL方程,解得:,时间表达式,法1:支路分析,设网孔电流如图(b)所示列出网孔电流方程,解得,法2:网孔分析,时间表达式,用导纳参数的相量模型如图所示,其中,参考节点如图,直接列出节点电压方程,解得,法3:节点分析,两个独立电源单独作用的电路如下图,分别求电流相量,然后相加得电流相量,法4:叠加定理,先求连接电感的网络的戴维南等效电路(1)断开电感支路得图(a)电路,求端口开路电压,法5:戴维南定理,得图(c)电路,求电流,(2)将图(a)电路中独立电源置零,得图(b)电路,求单口网络的输出阻抗,例16试求图(a)所示单口网络在=1rad/s和=2rad/s时的等效导纳。,解:由图(b)和(d)相量模型可得等效导纳,例17求图(a)的戴维南和诺顿等效电路。,解:开路电压:,将电流源置零,加流求压法求输出阻抗,短路电流:,戴维南和诺顿等效电路如图(b)和(c)。,7-27-47-5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论