高等数学(复旦大学版)第十章-多元函数积分学(一)_第1页
高等数学(复旦大学版)第十章-多元函数积分学(一)_第2页
高等数学(复旦大学版)第十章-多元函数积分学(一)_第3页
高等数学(复旦大学版)第十章-多元函数积分学(一)_第4页
高等数学(复旦大学版)第十章-多元函数积分学(一)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第10章 多元函数积分学()一元函数积分学中,曾经用和式的极限来定义一元函数在区间a,b上的定积分,并且已经建立了定积分理论,本章我们将推广到多元函数,建立多元函数积分学理论。 第一节 二重积分教学目的:1、熟悉二重积分的概念;2、了解二重积分的性质和几何意义,知道二重积分的中值定理;3、掌握二重积分的(直角坐标、极坐标)计算方法;4、能根据积分区域和被积函数正确选择积分顺序教学重点:1、二重积分的性质和几何意义;2、二重积分在直角坐标系下的计算教学难点:1、二重积分的计算;2、二重积分计算中的定限问题教学内容:一、二重积分的概念 1. 曲顶柱体的体积 设有一立体, 它的底是xOy面上的闭区域D, 它的侧面是以D的边界曲线为准线而母线平行于z轴的柱面, 它的顶是曲面z=f(x, y), 这里f(x, y)0且在D上连续. 这种立体叫做曲顶柱体. 现在我们来讨论如何计算曲顶柱体的体积. 首先, 用一组曲线网把D分成n个小区域Ds 1, Ds 2, , Ds n .分别以这些小闭区域的边界曲线为准线, 作母线平行于z轴的柱面, 这些柱面把原来的曲顶柱体分为n个细曲顶柱体. 在每个Ds i中任取一点(x i , h i), 以f (x i , h i)为高而底为Ds i的平顶柱体的体积为f (x i , h i) Dsi (i=1, 2, , n ).这个平顶柱体体积之和 .可以认为是整个曲顶柱体体积的近似值. 为求得曲顶柱体体积的精确值, 将分割加密, 只需取极限, 即.其中l是个小区域的直径中的最大值. 2. 平面薄片的质量. 设有一平面薄片占有xOy面上的闭区域D, 它在点(x, y)处的面密度为r(x, y), 这里r(x, y)0且在D上连续. 现在要计算该薄片的质量M. 用一组曲线网把D分成n个小区域Ds 1, Ds 2, , Ds n . 把各小块的质量近似地看作均匀薄片的质量: r(x i , h i)Ds i . 各小块质量的和作为平面薄片的质量的近似值: . 将分割加细, 取极限, 得到平面薄片的质量.其中l是个小区域的直径中的最大值. 定义 设f(x, y)是有界闭区域D上的有界函数. 将闭区域D任意分成n个小闭区域 Ds 1, Ds 2, , Ds n .其中Ds i表示第i个小区域, 也表示它的面积. 在每个Ds i上任取一点(x i, hi), 作和.如果当各小闭区域的直径中的最大值l趋于零时, 这和的极限总存在, 则称此极限为函数f(x, y)在闭区域D上的二重积分, 记作, 即.f(x, y)被积函数, f(x, y)ds被积表达式, ds面积元素, x, y积分变量, D积分区域, 积分和. 直角坐标系中的面积元素: 如果在直角坐标系中用平行于坐标轴的直线网来划分D, 那么除了包含边界点的一些小闭区域外, 其余的小闭区域都是矩形闭区域. 设矩形闭区域Dsi的边长为Dxi和Dyi, 则Dsi=DxiDyi, 因此在直角坐标系中, 有时也把面积元素ds 记作dxdy, 而把二重积分记作其中dxdy叫做直角坐标系中的面积元素. 二重积分的存在性: 当f(x, y)在闭区域D上连续时, 积分和的极限是存在的, 也就是说函数f(x, y)在D上的二重积分必定存在. 我们总假定函数f(x, y)在闭区域D上连续, 所以f(x, y)在D上的二重积分都是存在的. 二重积分的几何意义: 如果f(x, y)0, 被积函数f(x, y)可解释为曲顶柱体的在点(x, y)处的竖坐标, 所以二重积分的几何意义就是柱体的体积. 如果f(x, y)是负的, 柱体就在xOy 面的下方, 二重积分的绝对值仍等于柱体的体积, 但二重积分的值是负的. 二、二重积分的性质性质1 . 性质2 设c1、c2为常数, 则. 性质3 如果闭区域D被有限条曲线分为有限个部分闭区域, 则在D上的二重积分等于在各部分闭区域上的二重积分的和. 例如D分为两个闭区域D1与D2, 则. 性质4 (s为D的面积). 性质5 如果在D上, f(x, y)g(x, y), 则有不等式. 性质6 . 性质7(二重积分的中值定理) 设函数f(x, y)在闭区域D上连续, s 为D的面积, 则在D上至少存在一点(x, h)使得.三、 二重积分的计算法 X-型区域: D : j1(x)yj2(x), axb . Y -型区域: D : y1(x)yy2(x), cyd . 混合型区域: 设f(x, y)0, D=(x, y)| j1(x)yj2(x), axb. 此时二重积分在几何上表示以曲面z=f(x, y)为顶, 以区域D为底的曲顶柱体的体积. 对于x0a, b, 曲顶柱体在x=x0的截面面积为以区间j1(x0), j2(x0)为底、以曲线z=f(x0, y)为曲边的曲边梯形, 所以这截面的面积为.根据平行截面面积为已知的立体体积的方法, 得曲顶柱体体积为.即 V=. 可记为. 类似地, 如果区域D为Y -型区域: D : y1(x)yy2(x), cyd ,则有. 例1:计算, 其中D是由直线y=1、x=2及y=x所围成的闭区域. 解:画出区域D. 方法一 可把D看成是X-型区域: 1x2, 1yx . 于是. 注: 积分还可以写成. 方法二 也可把D看成是Y-型区域: 1y2, yx2 . 于是. 例2:计算, 其中D是由直线y=1、x=-1及y=x所围成的闭区域. 解:画出区域D, 可把D看成是X-型区域: -1x1, xy1. 于是 .也可D看成是Y-型区域:-1y1, -1xy . 于是.例3:计算, 其中D是由直线y=x-2及抛物线y2=x所围成的闭区域. 解:积分区域可以表示为D=D1+D2, 其中; . 于是.积分区域也可以表示为D: -1y2, y2xy+2. 于是 . 讨论积分次序的选择. 例4:求两个底圆半径都等于r的直交圆柱面所围成的立体的体积. 解:设这两个圆柱面的方程分别为x2+y2=r 2及x2+z2=r 2. 利用立体关于坐标平面的对称性, 只要算出它在第一卦限部分的体积V1, 然后再乘以8就行了. 第一卦限部分是以D=(x, y)| 0y, 0xr为底, 以顶的曲顶柱体. 于是 . 四、二重积分的换元法1.利用极坐标计算二重积分 有些二重积分, 积分区域D 的边界曲线用极坐标方程来表示比较方便, 且被积函数用极坐标变量r 、q 表达比较简单. 这时我们就可以考虑利用极坐标来计算二重积分. 按二重积分的定义. 下面我们来研究这个和的极限在极坐标系中的形式. 以从极点O出发的一族射线及以极点为中心的一族同心圆构成的网将区域D分为n个小闭区域, 小闭区域的面积为: , 其中表示相邻两圆弧的半径的平均值. 在Dsi内取点, 设其直角坐标为(x i, h i), 则有 , . 于是 , 即 . 若积分区域可表示为 j 1(q)rj 2(q), aqb, 则 . 讨论:如何确定积分限?.例5:计算, 其中D是由中心在原点、半径为a 的圆周所围成的闭区域. 解:在极坐标系中, 闭区域D可表示为0ra , 0q 2p . 于是 . 注: 此处积分也常写成. 利用计算广义积分: 设 D1=(x, y)|x2+y2R2, x0, y0, D2=(x, y)|x2+y22R2, x0, y0, S=(x, y)|0xR, 0yR. 显然D1SD2. 由于, 从则在这些闭区域上的二重积分之间有不等式 . 因为 , 又应用上面已得的结果有, ,于是上面的不等式可写成. 令R+, 上式两端趋于同一极限, 从而.例6:求球体x2+y2+z24a2被圆柱面x2+y2=2ax所截得的(含在圆柱面内的部分)立体的体积. 解:由对称性, 立体体积为第一卦限部分的四倍. ,其中D为半圆周及x轴所围成的闭区域. 在极坐标系中D可表示为 0r2a cosq , . 于是 . 小结:1、二重积分的定义、几何意义;2、二重积分的计算(直角坐标,极坐标)3、二重积分的转化作业:习题10-1 2 (1) (3)、 6 (1)(5)、 8 (1) (4)、9(1)、 10(2)、 11(1)(3)第3节 三重积分教学目的:1、熟悉三重积分的概念;2、了解三重积分的性质;3、掌握三重积分在直角坐标系下的计算方法;4、掌握三重积分在柱面坐标系、球面坐标系下的计算方法教学重点:1、 三重积分的概念和计算;2、三重积分在柱面坐标系下的计算教学难点:1、三重积分的计算;2、三重积分在球面坐标系下的计算教学内容:一、三重积分的概念 定义 设f(x, y, z)是空间有界闭区域W上的有界函数. 将W任意分成n个小闭区域Dv1, Dv2, , Dvn其中Dvi表示第i个小闭区域, 也表示它的体积. 在每个Dvi上任取一点(xi, hi, zi), 作乘积f(x i, h i, z i)Dvi(i=1, 2, , n)并作和. 如果当各小闭区域的直径中的最大值l趋于零时, 这和的极限总存在, 则称此极限为函数f(x, y, z)在闭区域W上的三重积分, 记作. 即. 三重积分中的有关术语: 积分号, f(x, y, z)被积函数, f(x, y, z)dv被积表达式, dv体积元素, x, y, z积分变量, W积分区域. 在直角坐标系中, 如果用平行于坐标面的平面来划分W, 则Dvi=Dxi DyiDzi , 因此也把体积元素记为dv =dxdydz, 三重积分记作. 当函数f (x, y, z)在闭区域W上连续时, 极限是存在的, 因此f(x, y, z)在W上的三重积分是存在的, 以后也总假定f(x, y, z)在闭区域W上是连续的. 三重积分的性质: 与二重积分类似. 比如 ; , 其中V为区域W的体积. 二、三重积分的计算1. 利用直角坐标计算三重积分 三重积分的计算: 三重积分也可化为三次积分来计算. 设空间闭区域W可表为z1(x, y)zz2(x, y), y1(x)yy2(x), axb,则 , 即 . 其中D : y1(x) y y2(x), axb. 它是闭区域W在xOy面上的投影区域. 提示: 设空间闭区域W可表为z1(x, y)zz2(x, y), y1(x)yy2(x), axb,计算. 基本思想: 对于平面区域D: y1(x)yy2(x), axb内任意一点(x, y), 将f(x, y, z)只看作z的函数, 在区间z1(x, y), z2(x, y)上对z积分, 得到一个二元函数F(x, y), ,然后计算F(x, y)在闭区域D上的二重积分, 这就完成了f(x, y, z)在空间闭区域W上的三重积分. , 则 . 即 . 其中D : y1(x) y y2(x), axb. 它是闭区域W在xOy面上的投影区域. 例1:计算三重积分, 其中W为三个坐标面及平面x+2y+z=1所围成的闭区域. 解:作图, 区域W可表示为: 0z1-x-2y, , 0x1. 于是 . 讨论: 其它类型区域呢? 有时, 我们计算一个三重积分也可以化为先计算一个二重积分、再计算一个定积分. 设空间闭区域W=(x, y, z)|(x, y)Dz, c1 zc2, 其中Dz是竖坐标为z 的平面截空间闭区域W所得到的一个平面闭区域, 则有.例2:计算三重积分, 其中W是由椭球面所围成的空间闭区域. 解:空间区域W可表为:, -c zc.于是 . 练习:1. 将三重积分化为三次积分, 其中 (1)W是由曲面z=1-x2-y2, z=0所围成的闭区域. (2)W是双曲抛物面xy=z及平面x+y-1=0, z=0所围成的闭区域. (3)其中W是由曲面z=x2+2y2及z=2-x2所围成的闭区域. 2. 将三重积分化为先进行二重积分再进行定积分的形式, 其中W由曲面z=1-x2-y2, z=0所围成的闭区域. 三、三重积分的换元法1. 柱面坐标变换 设M(x, y, z)为空间内一点, 并设点M在xOy面上的投影P 的极坐标为P(r, q ), 则这样的三个数r、q 、z就叫做点M的柱面坐标, 这里规定r、q 、z的变化范围为: 0r+, 0q 2p , -z+. 坐标面r=r0, q =q 0, z=z0的意义: 点M 的直角坐标与柱面坐标的关系: x=rcosq, y=rsinq, z=z . 柱面坐标系中的体积元素: dv=rdrdqdz. 简单来说, dxdy=rdrdq , dxdydz=dxdydz=rdrdq dz. 柱面坐标系中的三重积分: . 例3:利用柱面坐标计算三重积分, 其中W是由曲面z=x2+y2与平面z=4所围成的闭区域. 解:闭区域W可表示为: r2z4, 0r2, 0q2p. 于是 . 2. 球面坐标变换 设M(x, y, z)为空间内一点, 则点M也可用这样三个有次序的数r、j、q 来确定, 其中r为原点O与点M间的距离, j为与z轴正向所夹的角, q为从正z轴来看自x轴按逆时针方向转到有向线段的角, 这里P为点M在xOy面上的投影, 这样的三个数r、j 、q 叫做点M的球面坐标, 这里r、j、q 的变化范围为0r+, 0jp, 0q 2p. 点的直角坐标与球面坐标的关系: x=rsinjcosq, y=rsinjsinq, z=rcosj . 球面坐标系中的体积元素: dv=r2sinjdrdjdq . 球面坐标系中的三重积分: . 例4:求半径为a的球面与半顶角a为的内接锥面所围成的立体的体积. 解:该立体所占区域W可表示为: 0r2acosj, 0ja, 0q2p. 于是所求立体的体积为 . 提示: 球面的方程为x2+y2+(z-a)2=a2, 即x2+y2+z2=2az. 在球面坐标下此球面的方程为r2=2arcosj, 即r=2acosj. 小结:1、三重积分的定义;2、三重积分的计算(化三重积分为三次积分);3、三重积分换元法(柱面坐标,球面坐标)作业:习题10-32 (1)(3)(5)、 4(1)(2)、5(1)(2)、 6(2)(4)第4节 重积分的应用教学目的:1、理解空间曲面的面积;2、掌握空间曲面面积的计算教学重点:空间曲面面积的计算教学难点:空间曲面面积的计算教学内容: 有许多求总量的问题可以用定积分的元素法来处理. 这种元素法也可推广到二重积分的应用中. 如果所要计算的某个量U对于闭区域D具有可加性(就是说, 当闭区域D分成许多小闭区域时, 所求量U相应地分成许多部分量, 且U等于部分量之和), 并且在闭区域D内任取一个直径很小的闭区域ds时, 相应的部分量可近似地表示为f(x, y)ds 的形式, 其中(x, y)在ds内, 则称f(x, y)ds 为所求量U的元素, 记为dU, 以它为被积表达式, 在闭区域D上积分: , 这就是所求量的积分表达式. 一、空间曲面的面积 设曲面S由方程 z=f(x, y)给出, D为曲面S在xOy面上的投影区域, 函数f(x, y)在D上具有连续偏导数fx(x, y)和fy(x, y). 现求曲面的面积A . 在区域D内任取一点P(x, y), 并在区域D内取一包含点P(x, y)的小闭区域ds, 其面积也记为ds. 在曲面S上点M(x, y, f(x, y)处做曲面S的切平面T, 再做以小区域ds的边界曲线为准线、母线平行于z轴的柱面. 将含于柱面内的小块切平面的面积作为含于柱面内的小块曲面面积的近似值, 记为dA. 又设切平面T的法向量与z轴所成的角为g , 则,这就是曲面S的面积元素. 于是曲面S 的面积为,或 . 讨论: 若曲面方程为x=g(y, z)或y=h(z, x), 则曲面的面积如何求?,或 . 其中Dyz是曲面在yOz面上的投影区域,Dzx是曲面在zOx面上的投影区域. 例1 求半径为a的球的表面积. 解:取上半球面方程为,由 所以 二、平面薄片的重心 设有一平面薄片, 占有xOy 面上的闭区域D, 在点P(x, y)处的面密度为r(x, y), 假定m(x, y)在D上连续. 现在要求该薄片的质心坐标. 在闭区域D上任取一点P(x, y), 及包含点P(x, y)的一直径很小的闭区域ds(其面积也记为ds), 则平面薄片对x轴和对y轴的力矩(仅考虑大小)元素分别为dMx=ym(x, y)ds, dMy=xm(x, y)ds. 平面薄片对x轴和对y轴的力矩分别为, . 设平面薄片的质心坐标为, 平面薄片的质量为M, 则有, .于是, . 在闭区域D上任取包含点P(x, y)小的闭区域ds(其面积也记为ds), 则平面薄片对x轴和对y轴的力矩元素分别为dMx=ym(x, y)ds, dMy=xm(x, y)ds. 平面薄片对x轴和对y轴的力矩分别为, . 设平面薄片的质心坐标为, 平面薄片的质量为M, 则有, .于是, . 讨论: 如果平面薄片是均匀的, 即面密度是常数, 则平面薄片的质心(称为形心)如何求?求平面图形的形心公式为, . 例2 求位于两圆r=2sinq 和r=4sinq 之间的均匀薄片的质心. 解 因为闭区域D对称于y轴, 所以质心必位于y轴上, 于是. 因为 , , 所以. 所求形心是. 三、转动惯量 设有一平面薄片, 占有xOy面上的闭区域D, 在点P(x, y)处的面密度为m(x, y), 假定r(x, y)在D上连续. 现在要求该薄片对于x轴的转动惯量和y轴的转动惯量. 在闭区域D上任取一点P(x, y), 及包含点P(x, y)的一直径很小的闭区域ds(其面积也记为ds), 则平面薄片对于x轴的转动惯量和y轴的转动惯量的元素分别为dIx=y2m(x, y)ds , dI y=x2m(x, y)ds . 整片平面薄片对于x轴的转动惯量和y轴的转动惯量分别为, . 例3 求半径为a 的均匀半圆薄片(面密度为常量m)对于其直径边的转动惯量. 解 取坐标系如图, 则薄片所占闭区域D可表示为D=(x, y)| x2+y2a2, y0而所求转动惯量即半圆薄片对于x轴的转动惯量Ix , , 其中为半圆薄片的质量. 类似地, 占有空间有界闭区域W、在点(x, y, z)处的密度为r(x, y, z)的物体对于x、y、z轴的转动惯量为,.四、引力 我们讨论空间一物体对于物体外一点P0(x0, y0, z0)处的单位质量的质点的引力问题. 设物体占有空间有界闭区域W, 它在点(x, y, z)处的密度为r(x, y, z), 并假定r(x, y, z)在W上连续. 在物体内任取一点(x, y, z)及包含该点的一直径很小的闭区域dv(其体积也记为dv). 把这一小块物体的质量rdv近似地看作集中在点(x, y, z)处. 这一小块物体对位于P0(x0, y0, z0)处的单位质量的质点的引力近似地为 , 其中dFx、dFy、dFz为引力元素dF在三个坐标轴上的分量, , G为引力常数. 将dFx、dFy、dFz在W上分别积分, 即可得Fx、Fy、Fz, 从而得F=(Fx、Fy、Fz). 小结:1、曲面面积;2、平面薄片重心、转动惯量、引力作业:习题10-42、3、4第五节 对弧长的曲线积分教学目的:1、掌握对弧长的曲线积分的概念及性质;2、掌握对弧长的曲线积分的计算方法;3、会求曲线积分所对应的弧长教学重点:概念和计算方法教学难点:曲线积分弧长的计算教学内容:1、 对弧长的曲线积分的概念 曲线形构件的质量: 设一曲线形构件所占的位置在xOy面内的一段曲线弧L上, 已知曲线形构件在点(x, y)处的线密度为m(x, y). 求曲线形构件的质量. 把曲线分成n小段, Ds1, Ds2, , Dsn(Dsi也表示弧长);任取(xi , hi)Dsi, 得第i小段质量的近似值m(xi , hi)Dsi;整个物质曲线的质量近似为; 令l=maxDs1, Ds2, , Dsn0, 则整个物质曲线的质量为. 这种和的极限在研究其它问题时也会遇到. 定义 设L为xOy面内的一条光滑曲线弧, 函数f(x, y)在L上有界. 在L上任意插入一点列M1, M2, , Mn-1把L分在n个小段. 设第i个小段的长度为Dsi, 又(xi, hi)为第i个小段上任意取定的一点, 作乘积f(xi, hi)Dsi, (i=1, 2, , n ), 并作和, 如果当各小弧段的长度的最大值l0, 这和的极限总存在, 则称此极限为函数f(x, y)在曲线弧L上对弧长的曲线积分或第一类曲线积分, 记作, 即.其中f(x, y)叫做被积函数, L 叫做积分弧段. 设函数f(x, y)定义在可求长度的曲线L上, 并且有界. 将L任意分成n个弧段: Ds1, Ds2, , Dsn, 并用Dsi表示第i段的弧长; 在每一弧段Dsi上任取一点(xi, hi), 作和;令l=maxDs1, Ds2, , Dsn, 如果当l0时, 这和的极限总存在, 则称此极限为函数f(x, y)在曲线弧L上对弧长的曲线积分或第一类曲线积分, 记作, 即.其中f(x, y)叫做被积函数, L 叫做积分弧段. 定义 设函数f(x,y)在分段光滑曲线L上有定义,A,B是的端点,依次用分点A=M0,M1,.,Mn-1,Mn=B把L分成n个小弧段每小段的弧长记为,在上任取一点,若时,和式的极限存在,则称函数在曲线L上积分,且称该极限值为函数沿曲线L对弧长的曲线积分,记作,即由定义可知,曲线弧的质量M等于线密度沿曲线L对弧长的曲线积分,即特别地,当时,2、 对弧长的曲线积分的性质设,在L上可积,则有以下性质:(1)(2)(3)如果曲线L由几部分组成,则在弧L上的积分等于在各部分上积分之和,即三、对弧长的曲线积分的计算法定理 设曲线L由参数方程表示,在上有一阶连续导数,且(即曲线L是光滑的简单曲线),函数在曲线上连续,则若曲线L由方程给出,在上有一阶连续导数,且在曲线L上连续,则类似的,若曲线L由方程给出,在上有一阶连续导数,且在曲线L上连续,则例1、计算曲线积分,L是圆在第一象限中的部分.解:由圆的参数方程可得按公式,得 例2、 计算曲线积分曲线L是抛物线自点(0,0)到点(2,1)的一段弧.解:因为而x的变化区间是0,2,由公式得例3、 求其中L:y2=4x从(1,2)到(1,-2)一段。解:,则空间曲线由参数方程表示,则例4、计算,其中为曲线上相应于t从0变到2的这段弧. 解:例5、计算曲线积分, 其中G为螺旋线x=acost、y=asint、z=kt上相应于t从0到达2p的一段弧. 解:在曲线G上有x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论