翻译.doc

外文翻译--轴流式玉米脱粒装置运行因素对损耗和能耗的影响【中英文文献译文】

收藏

压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:81143557    类型:共享资源    大小:1.54MB    格式:ZIP    上传时间:2020-05-26 上传人:好资料QQ****51605 IP属地:江苏
12
积分
关 键 词:
中英文文献译文 外文 翻译 轴流 玉米 脱粒 装置 运行 因素 损耗 能耗 影响 中英文 文献 译文
资源描述:
外文翻译--轴流式玉米脱粒装置运行因素对损耗和能耗的影响【中英文文献译文】,中英文文献译文,外文,翻译,轴流,玉米,脱粒,装置,运行,因素,损耗,能耗,影响,中英文,文献,译文
内容简介:
Original ArticleEffects of operating factors for an axial-flow corn shelling unit onlosses and power consumptionWaree Srison,a,bSomchai Chuan-Udom,a,b,*Khwantri Saengprachatanaraka,baDepartment of Agricultural Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, ThailandbApplied Engineering for Important Crops of the North East Research Group, Khon Kaen University, Khon Kaen 40002, Thailanda r t i c l e i n f oArticle history:Received 20 August 2015Accepted 2 May 2016Available online 26 December 2016Keywords:Corn shelling unitMoisture contentFeed rateRotor speeda b s t r a c tThe operating factors were studied for an axial-flow corn shelling unit that affected losses and powerconsumption. The shelling unit was 0.90 m long, with a diameter toward the end of the peg tooth of0.30 m. The factors comprised three levels of moisture content (MC), three levels of feed rate (FR), andthree levels of rotor speed (RS). The experiments were conducted based on response surface method-ology and 23factorial designs. The results of this study indicated that the MC significantly affected grainbreakage and power consumption, but did not affect shelling unit losses. Increasing the MC increasedboth the grain breakage and power consumption. The FR affected the power consumption but did notaffect shelling unit losses and grain breakage. Increasing the FR increased the power consumption. TheRS had a significant impact on the shelling unit losses, grain breakage and power consumption.Increasing the RS increased the grain breakage and power consumption, but decreased the shelling unitlosses. Empirical models were formulated based on multiple linear models.Production and hosting by Elsevier B.V. on behalf of Kasetsart University. This is an open access articleunder the CC BY-NC-ND license (/licenses/by-nc-nd/4.0/).IntroductionCorn is a feed raw material and is important for the livestockindustry (Farjam et al., 2014). Corn production is based on its va-rietyand, additionally,the harvesting mechanism is oneof themostimportant components in corn production processes (Reference)(Chuan-Udom, 2013).Kunjara et al. (1998) discussed corn shelling in Thailand fromwhich the following information is sourced. Corn shelling has beenused and modified since 1929. The development of corn shellerequipment was mostly conducted by local manufacturers, with themost corn shellers used for de-husking being the rasp bar shellerand peg-tooth sheller. These shellers have been tested and evalu-ated to determine their best operational performance until theaccumulative losses (grain losses and grain breakage) were lessthan 1.5%. Nevertheless, with a rasp bar sheller, it was found thatbroken crop components remaining on the concave surfacesreduced the effectiveness of grain separation, while the powerconsumption and shelling drum speed of the peg-teeth shellerwere double that of the rasp bar sheller (Kunjara et al., 1998).A shelling unit for corn husker shelling was originally developedbased on a wheat threshing unit, which was efficient but the grainbreakage was relatively high (Department of Agriculture, 1996).Chuan-Udom (2013) studied the operating factors of Thai threshersaffecting corn shelling losses and found that an axial flow ricethresher was highly efficient and easy to clean, with little grainbreakage, with the adjustment to shell corns being economical andrequiringonlyeasy modification. Moreover, the principle of an axialflow shelling unit is suitable for Thailand and conditions in Asiancountries (Singhal and Thierstein, 1987; Chuan-Udom, 2011).The study of the operations and adjustments of the Thai, axialflow, rice combine harvester by Chuan-Udom and Chinsuwan(2009) showed that the rotor speed, guide vane inclination, grainmoisture content, feed rate and grain material other than grain hadsignificant effects on the threshing unit losses. Chinsuwan et al.(2003) studied the effects of the rotor tangential speed and feedrate on threshing unit losses and rice grain damage. The data ob-tained showed that the threshing unit losses decreased and thedamage increased when the rotor tangential speed was increased.Andrews et al. (1993) studied the effects of combine operatingparameters on the harvest loss in rice and reported that the feedrate, the ratio of material other than grain to that of grain, grainmoisture content, rotor speed and concave clearance affectedthreshing unit losses. Gummert et al. (1992) reported that the rotor* Corresponding author. Department of Agricultural Engineering, Faculty ofEngineering, Khon Kaen University, Khon Kaen 40002, Thailand.E-mail address: somchai.chuan (S. Chuan-Udom).Contents lists available at ScienceDirectAgriculture and Natural Resourcesjournal homepage: /agriculture-and-natural-resources/10.1016/j.anres.2016.05.0022452-316X/Production and hosting by Elsevier B.V. on behalf of Kasetsart University. This is an open access article under the CC BY-NC-ND license (/licenses/by-nc-nd/4.0/).Agriculture and Natural Resources 50 (2016) 421e425speed, feed rate and louver inclination affected threshing unitlosses and that the rotor speed affected grain damage.The appropriate axial flow sheller for shelling corn requires thestudy of important factors that affect losses and the power con-sumption, namely, the rotor speed, feed rate and grain moisturecontent Therefore, the aim of this research was to study the effectsof operating factors of an axial-flowcorn shelling unit on losses andthe power consumption.Materials and methodsCorn shelling unitThis study was conducted using an axial flow corn shelling unitprovided by the Agricultural Research Development Agency (PublicOrganization), Thailand as shown in Fig. 1. The shelling unit was0.90 m long, with a diameter toward the end of the peg tooth of0.30 m, with a controllable rotor speed. There was a powermeasuring device as shown in Fig. 2. The axial flow corn shellingunit consisted of a spike-toothed cylinder. The concave portionlocated under the cylinder was made of curved steel bar. The guidevane inclination was adjustable. The chute for grain under theshelling unit was divided into nine slots. The feed rate wasadjustable by controlling the conveyer belt speed of the materialsinto the shelling unit. The experiments were performed at thelaboratory scale.This study was performed with Pioneer B-80 corn variety.Factors studied and experimental designThe range of operating factors affecting losses and the powerconsumption of an axial flow corn shelling unit were the mois-ture content (MC), feed rate (FR) and rotor speed (RS), as shownin Table 1. Following a factorial experimental design, a largenumber of factors and degrees were required to determine thequantity of materials and the experimental unit. Thus, a 23factorial experimental design was applied, as shown in Table 2, toreduce the use of materials and the time for testing (Berger andMaurer, 2002).Testing methodEach test used 10 kg of corn. The corn was fed into the inlet ofthe shelling unit on a conveyor belt. The samples taken from thehusks and cobs outlet was screened until only corn grain remainedand the grain was weighed and subtracted from the original 10 kgof corn and the result was considered as the shelling unit loss (TL).To obtain the percentage of grain breakage (GB), two 1 kg sampleswererandomly taken fromthe chute, the GB wasseparated byhandand the weight of the GB was recorded. In this experiment, a torquetransducer with a strain gauge (KFG-2-350-D2-11L1M3R; SokkiKenyujo Co. Ltd.; Tokyo, Japan) was used. The torque meter wasinstalled on the cylinder shaft to measure the torque and tocalculate the power consumption (P).Data analysisFrom the obtained parameters, the terms TL, GB and P wereused to construct multiple line models. Then, the models wereFig. 1. Corn shelling unit.Fig. 2. Power measuring device.Table 1Independent variables and their factor levels.VariableRange and Levels (coded)e0X1; Moisture content (% wet basis)142128X2; Feed rate (t/hr)X3; Rotor speed (m/s)81012Table 2Experimental units based on a 23factorial design for losses and po-wer consumption of an axial flow corn shelling unit for the variablesmoisture content (X1), feed rate (X2) and rotor speed (X3).Experiment numberX1X2X31eee2ee3ee4e5ee6e7e89000100001100012000W. Srison et al. / Agriculture and Natural Resources 50 (2016) 421e425422applied in the analysis of the effects of parameters on losses andthe power consumption based on response surface methodologyand 23factorial designs, determining the effects of each param-eter on the coefficient of determination (R2) using the DesignExpert software package (version 7; Stat-Ease Inc; Minneapolis,MN, USA.). ANOVA was used for regression analysis of thedesign factors affecting TL, GB and P. Significance was tested atp FModel10.1571.4518.770.0001Model is significantMC1.93 ? 10?0.00511.93 ? 10?0.0052.49 ? 10?0.0040.9876FR1.82 ? 10?0.00311.82 ? 10?0.0030.0240.8796RS9.5719.57123.93 FModel19.5471.4551.620.0001Model is significantMC16.80116.80310.70FModel6.59 ? 100.00679.42 ? 100.005580.580.0001Model is significantMC1.53 ? 100.00611.53 ? 100.006944.000.0001FR3.93 ? 100.00613.93 ? 100.0062422.030.0001RS8.74 ? 100.00518.74 ? 100.005535.670.0001MC*FR86,211.76186,211.7653.160.0001MC*RS57,765.05157,765.0535.620.0001FR*RS86,211.76186,211.7653.160.0001MC*FR*RS1.54 ? 100.00515388.243.320.0841Pure error36,202.20191621.79Correlation total6.95 ? 100.00627MC moisture content, FR feed rate, RS rotor speed (RS); DF degrees of freedom.Fig. 6. Response surface plot of power consumption (P) showing the effect of feed rate(FR) and moisture content (MC, measured on a weight basis, %wb), when rotor speed(RS) was 10 m/s.Fig. 7. Response surface plot of power consumption (P) showing the effect of moisturecontent (MC, measured on a weight basis, %wb) and rotor speed (RS), when feed ratewas 1.5 t/hr.Fig. 8. Response surface plot of power consumption (P) showing the effect of feed rate(FR) and rotor speed (RS), when moisture content was 14% on a wet basis.W. Srison et al. / Agriculture and Natural Resources 50 (2016) 421e425425轴流式玉米脱粒装置运行因素对损耗和能耗的影响Waree Srison,Somchai,Chuan-Udom,Khwantri,Saengprachatanarak孔敬大学工程学院农业工程系,泰国孔敬 40002 孔敬大学东北重点作物应用工程研究所,泰国孔敬 40002 摘要研究了影响轴流式玉米脱粒装置损耗和能耗的的运行因素。脱壳装置长 0.90 米,钉齿末端直径 0.30 米。 这些因素包括三个级别的水分含量(MC),三个层次的进料速率(FR),以及三级转子速度(RS)。实验基于响应面方法和 23 因 子设计进行。研究结果表明,MC 显著影响颗粒破碎和功率消耗,但不影响脱壳 装置的损耗。增加 MC 可提高晶粒破碎率和耗电量。FR 影响了电耗,但不影响脱 粒装置的损耗和谷物的破碎。增加 FR 增加了能耗。RS 对脱粒单元损失、粮食破 碎和耗电量均无明显影响,增加 RS 值增加了晶粒破碎率和耗电量,但降低了脱 粒单位损失。在多元线性模型的基础上建立了经验模型。 关键词 玉米脱粒装置 ;水分含量;进给速率;转子转速 引言玉米是对畜牧业来说很重要的饲料原料(Farjam 等人,2014)。玉米生产是 基于其多样性,另外,收获机制是玉米生产过程中最重要的组成部分之一(参考 文献)((Chuan-Udom,2013 年)。 Kunjara 等人(1998 年)讨论了泰国的玉米脱壳问题,从中获得以下信息。玉 米脱粒机自从 1929 起就被使用和改良。玉米脱粒机的开发主要是由当地的制造 商来进行,大部分玉米脱粒机采用的是纹杆脱粒机和钉齿脱粒机。这些脱粒机已 经过测试和评估,以确定其最佳操作性能,直到累计损失(谷物损失和颗粒破碎) 低于 1.5。然而,用纹杆式脱粒机时发现,残留在凹形表面上的破碎作物部件 降低了谷物分离的有效性,而钉齿脱粒机的能耗和剥落滚筒速度是纹杆式脱粒机 的两倍(Kunjara 等人,1998 年)。 玉米脱粒装置最初是以小麦脱粒装置为基础研制而成的,但粮食破碎率较高(农业部,1996)。Chuan Udom(2013)对泰国脱粒机影响玉米脱壳损失的操作 因素进行了研究,发现轴流式脱粒机具有高效、易清洗、粮食破碎少等特点,对 调整脱粒玉米是经济的,并且只需要简单的修改。此外,轴流脱壳装置的原理适 用于泰国和亚洲国家的情况(Singhal 和 Thierstein,1987; Chuan-Udom,2011)。 Chuan-Udom 和 Chinsuwan(2009)对泰国轴流式水稻联合收割机的运行和调整进行的研究表明,转子速度,导叶倾斜度,谷物含水率,进料速度和颗粒物质 对脱粒装置损失都有明显的影响。Chinsuwan 等人(2003)研究了转子切向速度 和进给速度对脱粒装置损失和稻谷破损的影响。结果表明,当转子切向速度增大 时,脱粒单元损失减小,损伤增大。安德鲁斯等人(1993)研究了联合收割机操 作参数对水稻收获损失的影响,并介绍了喂入率、料谷比、颗粒含水量、旋翼转 速、凹间隙等因素对脱粒装置损失的影响。Gummert 等人(1992)报道了转子转 速、进给速度和百叶窗倾角对脱粒单元损失的影响,以及转子转速对颗粒损伤的 影响。 合适的玉米脱粒机需要研究影响损耗和能耗的重要因素,即转子转速,进料 速率和谷物含水率。因此,本研究的目的是研究轴流式玉米脱壳装置的运行因素 对损失和能耗的影响。 材料与方法玉米脱粒装置 本研究利用泰国农业研究开发机构(公共组织)提供的轴流玉米脱壳装置进 行,如图 1 所示,脱粒装置长为 0.90 米,直径端面距钉齿末端 0.3 米,具有可控的转子速度。功率测量装置如图 2 所示,轴流式玉米脱粒装置由圆柱钉齿构成, 圆筒下面的凹板由弯曲钢筋制成,导叶的倾角是可调的。脱粒装置下的谷物溜槽 分为九个槽,进给速度可通过控制物料输送带速度进入脱粒装置来调节。实验是 在实验室内成规模进行的。本试验采用先锋 B-80 玉米品种进行。 影响因素和实验设计 如表 1 所示,影响轴流式玉米脱壳装置损失和功耗的操作因素范围包括水分 含量(MC),进料速率(FR)和转子速度(RS)。在进行了因素实验设计之后,需 要大量因素和程度来确定材料和实验单元的数量。 因此,应用 2 3 析因实验设计, 如图所示表 2,减少材料的使用和测试时间(伯杰和 Maurer,2002). 测试方法 每次测试使用 10 公斤玉米,通过输送带将玉米送入脱粒装置的入口,从玉米籽粒和玉米棒出口取样,直到只剩下玉米颗粒,称重并从原来的 10 千克玉米 中减去籽粒,结果被认为是脱粒单位损失(TL)。 为获得颗粒破碎率,随机从斜 槽中取出两个 1 公斤的样品,用手工分离破碎籽粒并记录破碎籽粒的重量。在该 实验中,使用具有应变计的扭矩传感器(KFG-2-350-D2-11L1M3R; Sokki Kenyujo Co.Ltd。; Tokyo,Japan)。 扭矩计安装在气缸轴上以测量扭矩并计算功耗(P)。 数据分析 从所获得的参数中,使用术语 TL,GB 和 P 构建多个线模型。 然后,模型是 表 1 自变量及其因子水平 变量范围和级别(编码)-0+X1; 含水量(湿基)142128X2; 进给率(t / hr)X3; 转子转速(m / s)81012表 2 实验装置基于一个 2 3因子设计,用于变量水分含量(X1),进料速率(X2)和转子速度(X3)的轴流式玉米脱粒装置的损失和功耗。 实验编号X1X2X31-2+-3-+-4+-5-+6+-+7-+8+9000100001100012000表 3 水分含量(MC),进料速率(FR)和转子速度(RS)对脱粒单元损失, 籽粒破碎和功耗的影响。 实验编号MC(湿基)FR(t/hr)RS(m/s)脱壳单位损失(%)谷物破损率 (%)功耗(W)114(-)0.5(-)8(-)2.320.611529.73214(-)0.5(-)8(-)2.930.371439.82314(-)0.5(-)8(-)3.240.181417.35428(+)0.5(-)8(-)2.432.261979.24528(+)0.5(-)8(-)2.892.222046.66628(+)0.5(-)8(-)3.332.472024.19714(-)2.5(+)8(-)2.600.182271.42814(-)2.5(+)8(-)2.880.192316.37914(-)2.5(+)8(-)3.060.252316.371028(+)2.5(+)8(-)2.902.203058.061128(+)2.5(+)8(-)2.892.132990.631228(+)2.5(+)8(-)2.652.683058.061314(-)0.5(-)12(+)1.600.942069.141414(-)0.5(-)12(+)1.570.712046.661514(-)0.5(-)12(+)1.521.302091.611628(+)0.5(-)12(+)1.112.202361.321728(+)0.5(-)12(+)1.902.362338.841828(+)0.5(-)12(+)1.602.472428.741914(-)2.5(+)12(+)1.540.492653.502014(-)2.5(+)12(+)1.531.062541.122114(-)2.5(+)12(+)1.570.792631.022228(+)2.5(+)12(+)1.582.223215.392328(+)2.5(+)12(+)1.542.683215.392428(+)2.5(+)12(+)1.472.203215.392521(0)1.5(0)10(0)2.361.062586.072621(0)1.5(0)10(0)2.221.262653.502721(0)1.5(0)10(0)2.031.522563.602821(0)1.5(0)10(0)2.561.612586.07括号中的数字表示范围和级别的代码; -低,0 中等,+高。 应用响应面法和 2 3 析因设计分析参数对损耗和功耗的影响,使用设计专家软件确定每个参数对测定系数(R2)的影响(版本 7; Stat-Ease 公司;明尼苏达 州明尼阿波利斯,明尼苏达州,美国)。采用方差分析法对影响 TL 的设计因素进 行回归分析,在 P0.05 时进行籽粒破碎和功耗检验。 指标值 指标值 TL,GB 和 P 是根据评估玉米脱粒机的程序计算出来的(亚洲经济社 会委员会和太平洋农业机械地区网络 1995)。 结果与讨论 MC,FR 和 RS 对 TL,GB 和 P 的影响如表 3 所示。 影响脱粒装置损失的操作参数 影响脱壳装置损失的操作参数的方差分析结果如表 4 所示。结果表明,RS 对脱壳单元损失有显著影响,而 MC、FR、MCxFR、MCxRS、FRxRS 和 MCxFRxRS 对 脱壳单元损失的影响不显著。 确定操作参数对脱壳装置损失的影响的回归方程如公式(1): TL = 5.44 - 0.32RS (1) 其中 TL 是脱粒损失(百分比),RS(米每秒)是转子转速,方程(1)中 R2和 R2 的调整值分别为 0.87 和 0.87。 基于公式 (1)中,表示 MC 和 RS 对 TL 的影响的响应曲线图如图 3。 从图 3 中可以看出,增加转子转速(RS)减少了与 Simonyan(2009)的研究有关的脱粒单位损失(TL),其增加跳动导致脱粒能力增加减少脱粒单位损失。 影响籽粒破碎的操作参数 表 5 显示影响籽粒破碎的操作参数的方差分析结果。结果表明,MC、RS 和MC X RS 对籽粒破损有显著影响,而 FR,MC X FR,FR X RS 和 MC X FR X RS 对 籽粒破碎没有统计学影响。用于确定操作参数对籽粒破碎的影响的回归方程如方 程 (2): GB =-3.40 + 0.22MC + 0.28RS - 9.85 X 10-3MC X RS (2) 其中 GB 是籽粒破碎率(百分比),MC 是含水量(百分比),Rs 是转子速度(米每秒),R2 和调整后的 R2 值分别为 0.96 和 0.94。 基于公式 (2),开发了响应面图以显示 MC 和 RS 的影响(图 4)以及 MC 和 FR(图 5)在 GB 上。 如图 4 和图 5 所示,增加 RS 倾向于增加 GB,这与 Rostami 等人的研究有关(2009 年),在这种情况下,跳动加剧导致损失加剧。 MC 的增加导致 GB 的增加趋势(Chuan-Udom,2013,Mahmoud 和 Buchele, 1975),因为谷物的高含水量更加灵活,使得谷物在被击打时更容易破碎。 表 4 影响脱壳装置损耗的变异操作参数分析 资源平方和DF均方根F 值p 值 Prob F模型10.1571.4518.770.0001模型是重要的MC1.93x10-0.00511.93x10-0.0052.49x10-0.0040.9876FR1.82x10-0.00311.82x10-0.0030.0240.8796RS9.5719.57123.93 F模型19.5471.4551.620.0001模型重要MC16.80116.80310.70 F模型6.59x100.00679.42x100.005580.580.0001模型重要MC1.53x100.00611.53x100.006944.000.0001FR3.93x100.00613.93x100.0062422.030.0001RS8.74x100.00518.74x100.005535.670.0001MCxFR86,211.76186,211.7653.160.0001MCxRS57,765.05157,765.0535.620.0001FRxRS86,211.76186,211.7653.160.0001MCxFRxRS1.54x100.00515388.243.320.0841纯粹的错误36,202.20191621.79相关总数6.95x100.00627MC 为含水量,FR 为进给速率,RS 为转子速度(RS),DF 为自由度。 图 6.当转子速度(RS)为 10 m / s 时,功率消耗(P)的响应曲线图显示进料速率(FR)和 含水量(MC,以重量为基准测量百分比)的影响。图 7.当进料速度为 1.5 t / hr 时,功率消耗(P)的响应曲线图显示了含水量(MC,以重量基 准测量百分比)和转子速度(RS)的影响。图 8.功率消耗(P)的响应曲线图,显示当潮湿含量为 14时进料速率(FR)和转子速度(RS) 的影响。致谢 作者感谢:泰国农业研究开发机构(公共组织); 东北重要作物应用工程系,泰国孔敬孔敬大学; 以及泰国曼谷高等教育委员会采后技术创新中心提供研究支持。参考文献 1Andrews, S.B., Siebenmorgen, T.J., Vories, E.D., Loewer, D.H., Mauromoustakos, A., 1993. Effects of combine operating parameters on harvest loss andqualityin rice. Agric. Mech. Asia Afr. Lat. Am. 36, 1599-1607.2Berger, P.D., Maurer, R.E., 2002. Experimental Design with Applications in Man- agement, Engineering, and the Sciences. Belmont, CA, USA.3Chuan-Udom, S., 2011. Grain Harvesting Machines. Khon Kaen University, Khon Kaen, Thailand (in Thai).4Chuan-Udom, S., 2013. Operating factors of Thaithreshersaffectingcorn shelling losses. Songklanakarin J. Sci. Technol. 35, 63-67.5Chuan-Udom, S., Chinsuwan, W., 2009. Effects of concave rod clearance and number of concave bars on threshing performance of a axial ow rice threshing unit for Chainat 1 variety. KKU Res. J. 14, 1037-1045 (in Thai).6Chinsuwan, W., Pongjan, N., Chuan-udom, S., Phayom, W., 2003. Effects of th
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:外文翻译--轴流式玉米脱粒装置运行因素对损耗和能耗的影响【中英文文献译文】
链接地址:https://www.renrendoc.com/p-81143557.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2024  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!