【走向高考】2020年高考数学总复习 2-10函数模型及其应用课后作业 北师大版_第1页
【走向高考】2020年高考数学总复习 2-10函数模型及其应用课后作业 北师大版_第2页
【走向高考】2020年高考数学总复习 2-10函数模型及其应用课后作业 北师大版_第3页
【走向高考】2020年高考数学总复习 2-10函数模型及其应用课后作业 北师大版_第4页
【走向高考】2020年高考数学总复习 2-10函数模型及其应用课后作业 北师大版_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【走向高考】2020年高考数学总复习 2-10函数模型及其应用课后作业 北师大版一、选择题1(文)(教材改编题)等边三角形的边长为x,面积为y,则y与x之间的函数关系式为()Ayx2 Byx2Cyx2 Dyx2答案D解析yxxsin60x2.(理)2020年7月1日某人到银行存入一年期款a元,若年利率为x,按复利计算,则到2020年7月1日可取款()Aa(1x)5元 Ba(1x)6元Ca(1x)5元 Da(1x5)元答案A解析因为年利率按复利计算,所以到2020年7月1日可取款a(1x)5.2(2020商丘一模)某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L15.06x0.15x2和L22x,其中x为销售量(单位:辆)若该公司在这两地共销售15辆车,则能获得的最大利润为()A45.606 B45.6C45.56 D45.51答案B解析依题意可设甲销售x辆,则乙销售(15x)辆,总利润S5.06x0.15x22(15x)0.15x23.06x30(x0)当x10时,Smax45.6(万元)3某市2020年新建住房100万平方米,其中有25万平方米经济适用房,有关部门计划以后每年新建住面积比上一年增加5%,其经济适用房每年增加10万平方米按照此计划,当年建造的经济适用房面积首次超过该年新建住房面积一半的年份是(参考数据:1.0521.10,1.0531.16,1.0541.22,1.0551.28)()A2020年 B2020年C2020年 D2020年答案C解析设第n年新建住房面积为an100(15%)n,经济适用房面积为bn2510n,由2bnan得:2(2510n)100(15%)n利用已知条件解得n3,所以在2020年时满足题意4某学校制定奖励条例,对在教育教学中取得优异成绩的教职工实行奖励,其中有一个奖励项目是针对学生高考成绩的高低对任课教师进行奖励的奖励公式为f(n)k(n)(n10),n10(其中n是任课教师所在班级学生参加高考该任课教师所任学科的平均成绩与该科省平均分之差,f(n)的单位为元),而k(n)现有甲、乙两位数学任课教师,甲所教的学生高考数学平均分超出省平均分18分,而乙所教的学生高考数学平均分超出省平均分21分则乙所得奖励比甲所得奖励多()A600元 B900元C1600元 D1700元答案D解析k(18)200(元),f(18)200(1810)1600(元)又k(21)300(元),f(21)300(2110)3300(元),f(21)f(18)330016001700(元)5某种细胞在培养过程中正常情况下,时刻t(单位:分)与细胞数n(单位:个)的部分数据如下:t02060140n128128根据表中数据,推测繁殖到1000个细胞时的时刻t最接近于()A200 B220C240 D260答案A解析由表格中所给数据可以得出n与t的函数关系为n2,令n1000,得21000,又2101024,所以时刻t最接近200分6(2020北京理,6)根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)(A,c为常数)已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是()A75,25 B75,16C60,25 D60,16答案D解析本题主要考查了分段函数的理解及函数解析式的求解依题意:当xA时,f(x)单调递减;当xA时,f(x)恒为常数因此,30,15,解得:c60,A16,故选D.二、填空题7由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低,则现在价格为8100元的计算机经过15年的价格应降为_元答案2400解析设经过3个5年,产品价格为y,则y8100381002400(元)8(2020南京模拟)某工厂生产某种产品固定成本为2000万元,并且每生产一单位产品,成本增加10万元,又知总收入k是单位产品数Q的函数,k(Q)40QQ2,则总利润L(Q)的最大值是_万元答案2500解析总利润L(Q)40QQ210Q2 000(Q300)22500.故当Q300时,总利润最大,为2500万元三、解答题9某商人将进货单价为8元的某种商品按10元一个销售时,每天可卖出100个,现在他采用提高售价,减少进货量的办法增加利润,已知这种商品销售单价每涨1元,销售量就减少10个,问他将售价每个定为多少元时,才能使每天所赚的利润最大?并求出最大值解析设每个提价为x元(x0),利润为y元,每天销售总额为(10x)(10010x)元,进货总额为8(10010x)元,显然10010x0,即x10,则y(10x)(10010x)8(10010x)(2x)(10010x)10(x4)2360(0x10)当x4时,y取得最大值,此时销售单价应为14元,最大利润为360元.一、选择题1(2020广东华南师大附中模拟)在股票买卖过程中,经常用到两种曲线,一种是即时价格曲线yf(x),一种是平均价格曲线yg(x)(如f(2)3表示开始交易后第2小时的即时价格为3元;g(2)4表示开始交易后两个小时内所有成交股票的平均价格为4元)下面所给出的四个图像中,实线表示yf(x),虚线表示yg(x),其中可能正确的是()答案C解析本题考查函数及其图像的基本思想和方法,考查学生看图识图及理论联系实际的能力,则开始交易时,即时价格和平均价格应该相等,A错误;开始交易后,平均价格应该跟随即时价格变动,在任何时刻其变化幅度应该小于即时价格变化幅度,B、D均错误,故选C.2(2020长沙质检)某医院经调查发现:当还未开始挂号时,有N个人已经在排队等候挂号;开始挂号后,排队的人平均每分钟增加M个假定挂号的速度是每个窗口每分钟K个人当开放1个窗口时,40分钟后恰好不会出现排队现象当同时开放2个窗口时,15分钟后恰好不会出现排队现象根据以上信息,若要求8分钟不出现排队现象,则需要同时开放的窗口至少有()A4个 B5个C6个 D7个答案A解析当开放一个窗口时,N40M40K; 当开放两个窗口时,N15M30K. 由、得N60M,KM.设8分钟后不出现排队现象需同时开放x个窗口,则N8M8xK,60M80M8xM,即68M20Mx.x3.8,又xN,至少需同时开放4个窗口二、填空题3如下图,书的一页的面积为600cm2,设计要求书面上方空出2cm的边,下、左、右方都空出1cm的边,为使中间文字部分的面积最大,这页书的长、宽应分别为_答案30cm,20cm解析设书的长为a,宽为b,则ab600,则中间文字部分的面积S(a21)(b2)606(2a3b)6062486,当且仅当2a3b,即a30,b20时,Smax486.4(2020湖北文,15)里氏震级M的计算公式为:MlgAlgA0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为_级;9级地震的最大振幅是5级地震最大振幅的_倍答案610000解析本题考查应用数学解决实际问题的能力(1)Mlg1000lg0.001336.(2)设9级、5级地震最大振幅分别为A9,A5,则9lgA9lgA0,5lgA5lgA0,两式相减得4lgA9lgA5lg,即104,所以9级地震最大振幅是5级地震最大振幅的10000倍三、解答题5.据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图像如下图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km)(1)当t4时,求s的值;(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由分析认真审题,准确理解题意,建立函数关系解析(1)由图像可知,当t4时,v3412,s41224(km)(2)当0t10时,st3tt2,当10t20时,s103030(t10)30t150;当20t35时,s10301030(t20)30(t20)2(t20)t270t550.综上可知s(3)t0,10时,smax102150650.t(10,20时,smax3020150450650.当t(20,35时,令t270t550650.解得t130,t240,205时,只能售出5百台,故利润函数为L(x)R(x)C(x)即L(x)(2)当0x5时,L(x)4.75x0.5,当x4.75时,L(x)max10.78125万元当x5时,L(x)10.75.生产475台时利润最大(3)由或得,0.1x5或5x48,产品年产量在10台到4800台时,工厂不亏本(理)(2020福建理,18)某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y10(x6)2,其中3x6,a为常数已知销售价格为5元/千克时,每日可售出该商品11千克(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大解析(1)因为x5时,y11,所以1011,a2.(2)由(1)可知,该商品每日的销售量y10(x6)2,所以商场每日销售该商品所获得的利润f(x)(x3)10(x6)2210(x3)(x6)2,3x6.从而,f(x)10(x6)22(x3)(x6)30(x4)(x6)于是,当x变化时,f(x),f(x)的变化情况如下表:x(3,4)4(4,6)f(x)0f(x)单调递增极大值42单调递减由上表可得,x4是函数f(x)在区间(3,6)内的极大值点,也是最大值点所以,当x4时,函数f(x)取得最大值,且最大值等于42.答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大7某加工厂需定期购买原材料,已知每公斤原材料的价格为1.5元,每次购买原材料需支付运费600元每公斤原材料每天的保管费用为0.03元,该厂每天需消耗原材料400公斤,每次购买的原材料当天即开始使用(即有400公斤不需要保管)(1)设该厂每x天购买一次原材料,试写出每次购买的原材料在x天内总的保管费用y1(元)关于x的函数关系式;(2)求该厂多少天购买一次原材料才能使平均每天支付的总费用y(元)最少,并求出这个最小值解析(1)每次购买原材料后,当天用掉的400公斤原材料不需要保管,第二天用掉的400公斤原材料需保管1天,第三天用掉的400公斤原材料需保管2天,第四天用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论