已阅读5页,还剩37页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
燃料电池,对许多人来说,“氢能”并不是一个十分熟悉的字眼。事实上,在传统的煤炭、石油和天然气等化石燃料给人类带来环境污染、温室效应等诸多问题的当今,许多国家,尤其是许多发达国家已将“洁净”的氢能作为自己的未来能源而加紧研究。,氢能被提上人类未来能源的议程是大势所趋。众所周知,当今世界,为了解决能源短缺、环境污染日益严重和经济持续发展等问题,洁净的新能源和可再生能源的开发已是迫在眉睫。对我国来说,交通运输的能耗所占比重愈来愈大,与此同时,汽车尾气污染已经成为大气污染特别是城市大气污染的最重要因素。,由此可以看出,寻找新的洁净能源无论对整个世界还是对我国的可持续发展都有着特别重要的意义。氢能作为一种洁净的可再生能源,同时又具有可储可输的特点,从长远上看,它的发展可能带来能源结构的重大改变,而在目前它是一种理想的低污染或零污染的车用能源,国际上公认在不远的将来氢燃料汽车将是解决城市大气污染的最重要途径之一。因此,氢能作为解决当前人类所面临困境的新能源而成为各国大力研究的对象便是情理之中的事了。,氢能开发,大势所趋,氢是自然界中最普遍的元素,资源无穷无尽不存在枯竭问题氢的热值高,燃烧产物是水零排放,无污染,可循环利用氢能的利用途径多燃烧放热或电化学发电氢的储运方式多气体、液体、固体或化合物,氢气利用与燃料电池,氢像电一样可以从任何能源中得到,包括可再生的能源;氢可以由电获得并以相对高的效率转换成电,一些由太阳能直接得到氢的技术已经成功;获取氢的原材料是水,资源丰富,由于氢使用后的产物是纯水或水蒸气,因此氢是完全可再生的燃料;氢可以以气态(便于大规模储存)、液态(便于航空航天应用)或以金属氢化物(便于机动车和别的相对小的规模储量需求)形式储存;氢能够借助于管道和钢瓶进行长距离运输(大多数情况下比电更经济和有效);氢可通过催化燃烧、电化学转换和氢化物,比任何其他燃料有更多的方法和更高的效率转换成为其他形式的能源;氢是对环境无害的能源。,氢能,“喝”氢的汽车,燃料电池的概念是由蒙德(Mond)和莱格(Langer)于1889年首先提出来的。就在这时内燃机问世了,内燃机的发明使人们对燃料电池的兴趣推迟了60年。1959年培根研制成功氢氧燃料电池,他对燃料电池的研究工作,奠定了燃料电池发展的基础。20世纪60年代,随着航天技术的发展,美国对培根氢氧燃料电池进行了改进,并分别于1965年和1966年成功的将其应用于双子星座和阿波罗飞船上,为其提供电力。20世纪70年代,因中东战争导致两次世界性石油危机,80年代美国、加拿大、日本和欧洲等的世界发达国家投入大量人力和财力研究开发燃料电池,在90年代燃料电池实现燃料技术上的真正突破,佳能、松下、三星、东芝都发布了自己的产品,燃料电池进入了应用阶段。,燃料电池,由于它是把燃料通过化学反应释出的能量变为电能输出,所以被称为燃料电池。它是利用氢和氧生成水的过程来产生电力的一种装置。,燃料电池:被称为连续电池,它在等温条件下直接将储存在燃料和氧化剂中的化学能转变为电能。燃料电池在反应过程中不涉及燃烧,能量交换效率不受卡诺循环的限制。,工作原理:通过物质发生化学反应时连续地向其供给活物质(起反应的物质)-燃料和氧化剂,促使物质发生化学反应时释出的能量直接将其转换为电能。,具体地说,燃料电池是利用水的电解的逆反应的发电机。它由正极、负极和夹在正负极中间的电解质板所组成。,工作时向负极供给燃料(氢H2),向正极供给氧化剂(空气O2)。氢在负极分解成正离子H+和电子e-。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。,燃料电池的用途:电动车交通工具(动力车及军舰等),便携式电源、发电厂及工作电站等,燃料电池的应用,1、军事上的应用军事应用应该是燃料电池最主要,也是最适合的市场。高效,多面性,使用时间长,以及宁静的工作,这些特点极适合于军事工作对电力的需要。燃料电池可以以多种形态为绝大多数军事装置,从战场上的移动手提装备到海陆运输提供动力。在军事上,微型燃料电池要比普通的固体电池具有更大的优越性,其增长的使用时间就意味着在战场上勿需麻烦的备品供应。此外,对于燃料电池而言,添加燃料也是轻而易举的事情。同样,燃料电池的运输效能能极大地减少活动过程中所需的燃料用量,在进行下一次加油之前,车辆可以行驶得更远,或在遥远的地区活动更长的时间。这样,战地所需的支持车辆、人员和装备的数量便可以显著的减少。自20世纪80年代以来,美国海军就使用燃料电池为其深海探索的船只和无人潜艇提供动力。,2、移动装置上的应用伴随燃料电池的日益发展,它们正成为不断增加的移动电器的主要能源。微型燃料电池因其具有使用寿命长,重量轻和充电方便等优点,比常规电池具有得天独厚的优势。如果要使燃料电池能在膝上型电脑,移动电话和摄录影机等设备中应用,其工作温度,燃料的可用性,以及快速激活将成为人们考虑的主要参数,目前大多数研究工作均集中在对低温质子交换膜燃料电池和直接甲醇燃料电池的改进。正如其名称所示,这些燃料电池以直接提供的甲醇-水混合物为基础工作,不需要预先重整。使用甲醇,直接甲醇燃料电池要比固体电池具有极大的优越性。其充电仅仅涉及重新添加液体燃料,不需要长时间地将电源插头插在外部的供电电源上。当前,这种燃料电池的缺点是用来在低温下生成氢所需的白金催化剂的成本比较昂贵,其电力密度较低。如果这二个问题能够解决,应该说没有什麽问题能阻挡它们的广泛应用了。目前,美国正在试验以直接甲醇燃料电池为动力的移动电话,而德国则在实验以这种能源为动力的膝上型电脑。,3、居民家庭的应用对于固定应用而言,设计燃料电池的技术困难就简化得多了。尽管许多燃料电池能生产50kW的电能,但绝大部分商业化的燃料电池目前都是用于固定的。现在,许多迹象表明,燃料电池也可用语人们称做的居民应用(大都小于50kW)。低温质子交换膜燃料电池或磷酸燃料电池几乎可以满足私人居户和小型企业的所有热电需求。目前,这些燃料电池还不能供小型的应用,美国,日本和德国仅有少量的家庭用质子交换膜燃料电池提供能源。质子交换膜燃料电池的能源密度比磷酸燃料电池大,然而后者的效率比前者高,且目前的生产成本也比前者便宜。这些燃料电池应该能够为单个私人居户或几家居户提供能源,通过设计可以满足居民对能源的所有要求,或者是他们的基本负载,高峰时的需求由电力网提供。为了有利于该技术的应用,可以用天然气销售网作为氢燃料源。当前,许多生产商预测在不久的将来便会出现其它燃料源泉,这有助于进一步降低排放,加速燃料电池进入新的理想市场。新近进入固定燃料电池市场的厂家是汽车大亨GeneralMotors,她于2001年8月成功地开发了一种产品。,4、空间领域的应用在20世纪50年代后期和60年代初期,美国政府为了替其载人航天飞行寻找安全可靠的能源,对燃料电池的研究给于了极大的关心和资助,使燃料电池取得了长足的进步。重量轻,供电供热可靠,噪声轻,无震动,并能生产饮用水,所有这些优点均是其它能源不可比拟的。GeneralElectric生产的Grubb-Niedrach燃料电池是NASA用来为其Gemini航天项目提供动力的第一个燃料电池,也是第一次商业化使用燃料电池。从20世纪60年代起,飞机制造商Pratt&Whitney赢得了为阿波罗项目提供燃料电池的合同。Pratt&Whitney生产的燃料电池是基于对Bacon专利的碱性燃料电池的改进,这种低温燃料电池是最有效的燃料电池。在阿波罗飞船中,三组电池可产生1.5kW或2.2kW电力,并行工作,可供飞船短期飞行。每组电池重约114kg,装填有低温氢和氧。在18次飞行中,这种电池共工作10,000小时,未发生一次飞行故障。在20世纪80年代航天飞机开始飞行时,Pratt&Whitney的姊妹公司国际燃料电池公司继续为NASA提供航天飞机使用的碱性燃料电池。飞船上所有的电力需求由3组12kW的燃料电池存储器提供,勿需备用电池。国际燃料电池公司技术的进一步发展使每个飞船上使用的燃料电池存储器能提供约等于阿波罗飞船上同体积的燃料电池十倍的电力。以低温氢和氧为燃料,这种电池的效率为70%左右,在截至现在的100多次飞行中,这种电池共工作了80,000多个小时。,5、固定的应用目前,燃料电池开发得最完善的市场要数热电的固定提供源市场。与传统的矿物燃料相比,燃料电池的高效和低排放量使其对用户具有极大的吸引力。此外,燃料电池技术的独立性对于那些国家电网不能覆盖,或国家电网不够稳定而需要备用电力设备的地区而言,这种能源具有特殊的意义。鉴于这种电池的工作温度可低达80,它们可安装在私人家庭,小型的商业活动场所,甚至满足大型企业活动的所有能源需求。截至目前为止,可以说现在的燃料电池生产商的注意力均集中于非居民的应用。当前唯一提供商业化燃料电池的国际燃料电池公司已在学校、办公室和银行设施安装了200多个磷酸燃料电池装置。在不久的将来,诸如溶化的碳酸盐燃料电池和固态氧化物燃料电池等高温燃料电池也将用于大型的工业设施和兆瓦级的发电厂。当工作温度上升到600-1100时,这种高温燃料电池可以耐受氢污染源,因此可以使用未加重整的天然气,柴油,或汽油。此外,它们所产生的热能还可用来驱动增器蒸气气轮机再进行发电。,6、运输上的应用以内燃机提供动力的汽车已成为有害气体排放的主要排放源,在世界各个国家和地方机构都在立法强迫汽车制造商生产能极大限度地降低排放的车辆,燃料电池可为这种要求带来实质的机遇。位于Alberta的Pembina适当设计研究所指出:当一辆小车使用以天然气重整的氢为燃料的燃料电池,其二氧化碳的排放量可以减少高达72%。,驱动车辆的燃料电池必须能迅速地达到工作温度,具有经济上的优势,并能提供稳定的性能。质子交换膜燃料电池最有条件满足这些要求,其工作温度交低,80左右,它们能很快地达到所需的温度。由于能迅速地适应各种不同的需求,与内燃机的效率25%左右相比,它们的效率可高达60%。现在,大多数车辆生产商视质子交换膜燃料电池为内燃机的后继者,GeneralMotors,Ford,DaimlerChrysler,Toyota,Honda,以及其他许多公司都已生产出使用该技术的原型。运用不同车辆和使用不同地区的试验进展顺利,用质子交换膜燃料电池为公共汽车提供动力的试验已在温哥华和芝加哥取得成功。德国的城市也进行了类似的试验,明后二年(2002-2003),还有另外十个欧洲城市也将在公共汽车上进行试验,伦敦和加利福尼亚也将计划在小型车辆上进行试验。在生产商能够有效地,大规模地生产质子交换膜燃料电池之前,需要解决的主要问题包括生产成本,燃料质量,以及电池的体积。但愿技术的进一步发展和扩大生产的共同作用将会运用经济的规模性而降低生产成本。目前,人们也在对直接使用甲醇为燃料和从环境空气中取得氧的另一解决方案进行研究,它也可以避免燃料的重整过程。,燃料电池必须同时要满足以下功能:物质、能量平衡,从电池外部提供的燃料和氧化剂(空气),在发电的同时连续地排出生成水合二氧化碳等气体,即所谓的物质移动-供给功能;燃料电池的基本结构,为了防止易燃、易爆有危险的燃料和氧化剂混合、泄露,应有分离、密封功能,为了分离燃料和氧化剂两种物料,需要有隔离机能,平板型、圆筒型电池和电堆的结构具有这种功能;电连接,各电池在低损失时应有连接已发生电力的输出功能和燃料电池的直流电转变成交流电的功能;热平衡,为了保持燃料电池一定温度,需要具有温度控制和冷却功能以及利用联合发电的排热功能;适用的燃料,在燃料电池的电极反应上,供给的燃料能变换成富氢气燃料的改质功能;最优化,为使气态燃料和氧化剂发生很好的电极反应,电极应有一定功能。保持良好电池特性的三相界面的多孔质电极结构和催化剂、温度、压力影响以及电池内浓度变化和电池特性的最佳化。,燃料电池的特点,燃料电池的特点是能量转换率高,它的能效达到60%70%,远高于热机和发电机的效率;环境友好,对于氢燃料电池,发电后的产物只有水;工作安静;方便使用;燃料电池发电系统由配置合理的电池组构成,可实现工厂生产模块,电站安装,更换方便;适用性强,燃料电池的燃料多种多样,如氢气、煤气、天然气、甲醇和汽油,燃料电池供电范围广,可根据需求建立大中小型电站,也可以制成携带式电源。,燃料电池的类型,目前燃料电池主要按电解质的性质划分为五大类:碱性燃料电池(alkalinefuelcell),简称AFC;质子交换膜燃料电池(protonexchangemembranefuelcell),简称PEMFC;磷酸燃料电池(phosphorousacidfuelcell),简称PAFC;熔融碳酸盐燃料电池(moltencarbonatefuelcell),简称MCFC;固体氧化物燃料电池(solid-oxidefuelcell),简称SOFC。,燃料电池介绍,燃料电池是化学能直接转化成电能的一种动力设备,燃料电池的基本反应步骤:1:反应物向燃料电池内部传递2:电化学反应3:离子传导以及电子传导4:产物排出,各种燃料电池的工作原理,碱性燃料电池,质子交换膜燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池,直接甲醇燃料电池,2.碱性燃料电池(alkalinefuelcell-AFC),20世纪6070年代,由于载人航天飞行对高比功率、高比能量电源的需求,在美国和国际上形成了碱性燃料电池的高潮,在19601965年期间,美国pratt-whitney公司受美国宇航局的委托,在英国培根教授工作的基础上,为Apollo登月飞行开发成功了PC3A型碱性燃料电池系统,正常输出功率可达1.5Kw,过载能力可达2.3Kw。54台电池已9次用于阿波罗登月飞行、太空实验室,总工作时间已达10750h。20世纪70年代,美国联合科技公司在美国航空航天局支持下,又成功开发用于航天飞机的石棉膜型碱性燃料电池系统,并于1981年首次用于航天飞行。碱性燃料电池在航天方面的成功应用,曾推动人们探索它在地面和水下应用的可行性。但是由于它以浓碱为电解液,在地面应用必须脱除空气中的微量CO2。而且它只能以纯氢或NH3、N2H2等分解气为燃料,若以各种碳氢化合物重整气为燃料,则必须分离出混合气中的CO2。20世纪80年代后,由于质子交换膜燃料电池技术突破并得到快速发展,寻求地面与水下应用的燃料电池已转向PEMFC。AFC是燃料电池中生产成本最低的,因此可用于小型的固定发电装置。,2.1碱性燃料电池工作原理,碱性燃料电池是以强碱为电解质,氢为燃料,氧为氧化剂的燃料电池,在阳极,氢气与碱中的OH在电催化剂作用下,发生氧化反应生成水和电子:H2+2OH-2H2O+2e-E0=0.828v,氢电极反应生成的电子通过外电路到达阴极,在阴极电催化剂的作用下,参与氧的还原反应:12O2+H2O+2e-2OH-E00.401v生成的OH通过饱浸碱液的多孔石棉膜迁移到氢电极。,为保持电池连续工作,除需与电池消耗氢气、氧气等速地供应氢气、氧气外,还需连续、等速地从阳极排除电池反应生成的水,以维持电解液浓度的稳定;排除电池反应的废热以维持电池工作温度的稳定。,图21碱性燃料电池电化学反应,AFC的燃料有纯氢(用碳纤维增强铝瓶储存)、储氢合金和金属氢化物。AFC工作时会产生水和热量,采用蒸发和氢氧化钾的循环实现排除,以保障电池的正常工作。氢氧化钾电解质吸收CO2生成的碳酸钾会堵塞电极的孔隙和通路,所以氧化剂要使用纯氧而不能用空气,同时电池的燃料和电解质也要求高纯化处理。,2.2电催化剂与电极及其制备工艺,2.2.1电催化剂选择碱性燃料电池电催化剂时,首要条件有两个:一是电催化剂对氢的电化学氧化和氧的电化学还原的催化活性;二是在浓碱中电催化剂于电极工作电位范围内的稳定性。对于碱性燃料电池,强碱的阴离子为OH-,它既是氧电化学还原的产物,又是导电离子。因此在电化学反应过程中不存在酸性电池中能够出现的阴离子特殊吸附对电催化化活性和电极过程动力学的不利影响。碱的腐蚀性比酸低得多,所以碱性电池的电催化剂不仅种类比酸性电池多,而且活性也高。对于培根型中温(约200度)碱性燃料电池,多采用双孔结构的镍电极,及用镍作为电催化剂。而对于采用PTFE粘结型多孔气体扩散电极的碱性燃料电池,由于在航天应用中要求高比功率与高比能量,为达到高电催化活性,多采用将贵金属(例如铂)催化剂分散到碳基体上,形成具有催化活性的电极。,2.2.2电极结构与制备工艺,1)双孔结构电极培根采用雷尼合金制备双孔结构电极,其粗孔层孔径30m,细孔层孔径16m,电极厚度约为1.6mm。粗孔层内充满反应气体,细孔层内填满电解液。细孔层的电解液浸润粗孔层,液气界面形成并发生电化学反应,离子和水在电解液中传递,而电子则在构成粗孔层和细孔层的雷尼合金骨架内传导。电池工作时,只要控制反应气与电解液压差在一定范围内,双孔结构电极可以满足多孔气体扩散电极的要求,并保持反应界面稳定。为提高双孔电极的电催化活性,可将高催化活性的组分引入双孔电极粗孔层,例如用氯铂酸或硝酸银溶液浸渍双孔电极粗孔层,再用还原剂如水合肼还原,即可制备出粗孔层表面担有高电催化活性组分的双孔结构电极。这种双孔结构电极只适用于低温燃料电池。,在水溶液电解质中,某些含有各种电催化剂的活性炭等材料可被浸润,同时又是电的良导体。这样的材料可提供电子导电与液相传质的通道,但它无法提供反应气传递的气体通道。加入PTFE等疏水物质,由于其疏水特性,可在电极中形成气体通道。疏水剂的加入除了提供气体通道之外,还有一定粘合作用,可使分散的电催化剂聚集体牢固结合。这种电催化剂与疏水剂构成的电极就是粘合型气体扩散电极。,2)疏水的粘合型电极,这种气体扩散电极可简单地视为微观尺度上相互交错的双网络体系。由疏水剂构成的疏水网络为反应气的进入提供了电极内部通道;由电催化剂构成的另一亲水网络可为电解质所完全润湿,从而提供电子与液相离子传导通道,并在电催化剂上完成电化学反应。这种电极由于电催化剂外液膜很薄,其极限电流很高。电催化剂是一种高分散体系,只要确保电解液一定的浸入深度,这种电极就能具有较大的真实表面积,既具有高的反应区。,2.3石棉膜,AFC的隔膜材料是石棉膜。在石棉膜型碱性燃料电池中,饱浸碱液的石棉膜的作用有二,一是利用其阻气功能,分隔氧化剂和还原剂;二是为OH-的传递提供通道。,石棉的主要成分为氧化镁和氧化硅(分子式为3MgO.2SiO2.2H2O),具有均匀的孔结构,为电子绝缘体。长期在浓碱的水溶液中浸泡,其酸性组分与碱反应生成微溶性的硅酸钾。为减少石棉膜在浓碱中的腐蚀,可在石棉纤维制膜前用浓碱处理,也可以在涂入石棉膜的浓碱中加入百分之几的硅酸钾,抑制石棉膜的腐蚀,减小膜在电池中因腐蚀而导致的结构变化。,因为石棉对人体有害,而且在浓碱中缓慢腐蚀,为改进碱性燃料电池的寿命与性能,已成功开发钛酸钾微孔隔膜,并已成功地用于美国航天飞机用碱性燃料电池中。,2.4双极板与流场,在碱性燃料电池工作条件下,性能稳定、比较廉价的双极板材料是镍和无孔石墨板。,作为航天电源,要求具有高的质量比功率和体积比功率,因此多采用厚度为毫米级的镁、铝等轻金属制备双极板。如美国用于航天飞机的动态排水石棉膜型碱性燃料电池既采用镁板镀银或镀金作双极板。,对地面和水下应用,可采用无孔石墨板或铁板镀镍作双极板,用腐蚀加工工艺制备点状或平行沟槽流畅,再镀镍作为碱性燃料电池双极板。,2.5碱性燃料电池排水,为确保电池连续稳定的运行,必须以与电池生成水相等的速度将反应产物水排出,至今已发展了动态排水与静态排水两种方法。,2.5.1动态排水,对碱性氢氧燃料电池,水是在氢电极生成的。所谓动态排水,是用风机循环氢气,在氢电极生成的液态水蒸发至氢气中,迁移至电池外的冷凝器,冷凝后分离;氢气在与由氢源来的氢混合返回电池。,美国航天飞机用氢氧石棉膜型燃料电池和我国天津电源研究所在20世纪70年代研制的碱性燃料电池均采用这种动态排水方法。,图22培根型碱性燃料电池系统工作示意图,2.5.2静态排水,静态排水是在电池氢电极侧增加一张饱浸KOH液的微孔导水膜,将电池的氢腔以及水蒸气腔分开。水蒸气腔维持负压,水真空蒸发。电池反应在氢电极侧生成的水蒸发至氢气室,通过扩散迁移至导水膜一侧冷凝,依靠浓差扩散迁移至导水膜的另一侧,既水蒸气腔,再真空蒸发。靠压差迁移至电池外冷凝分离器冷凝回收。,静态排水能力优于动态排水,仅需控制水蒸气腔真空度,易于实施,在过载23倍时不加蓄碱板也不导致碱流失。但是每节电池要增加一个水蒸气腔,电池结构比动态排水复杂。,2.6AFC的性能,(1)能量转化效率高通常AFC的输出电压为0.80.95V,其能量转化效率可高达60%70%。这由AFC的结构所决定的,AFC的电化学反应是在相同的电催化剂上实现,交换电流密度高导致能量转化效率高。(2)采用非铂系催化剂AFC通常采用雷尼镍、硼化镍等作催化剂,免受铂资源制约,同时可降低成本。(3)化学性能稳定镍在碱性介质中和电池的工作温度下化学性质稳定,因此可采用镍板或镀镍金属板作双极板。AFC采用氢氧化钾作电解质,它的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年下学期高二化学规范答题训练试题
- 2025年上学期高一数学综合素质评价参考试题
- 在线仲裁服务合同
- 2025年超星尔雅学习通《生态环保的重要意义与绿色发展模式推进研究》考试备考题库及答案解析
- 2025年超星尔雅学习通《营销策略与方案》考试备考题库及答案解析
- 网络推广渠道分析与整合营销方案
- 钢结构雨棚施工方案设计
- 基于空间群智大数据的共享单车需求热点洞察与智能调度策略研究
- 少儿主题法律教育班会方案
- 基于程序化交易的股指期货组合策略优化与实证研究
- 人教版初中化学九年级上册第六单元《碳和碳的氧化物》课题1《金刚石、石墨和C60》第二课时《单质碳的化学性质》教学设计
- 救护车合作协议书合同
- 【西安交通大学】2025年电力人工智能多模态大模型创新技术及应用报告
- 《妇产科宫颈癌》课件
- 上下楼梯安全课件
- 养猪场成本核算流程
- 老年患者安全用药
- 炼钢厂铁水包使用管理制度(4篇)
- 充电宝安全教育
- GB/T 19077-2024粒度分析激光衍射法
- 合同解除协议书范例模板
评论
0/150
提交评论