全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
阅读理解(24题)解题方法和技巧:1、根据他给的例子,模仿求解,2、转化思想,3、较强的观察、归纳、推理、分析能力,4、在理解的基础上对知识进行升华。阅读理解题按解题方法不同常见的类型有:(1)定义概念与定义法则型;(2)解题示范(改错)与新知模仿型;(3)迁移探究与拓展应用型等.【解题策略】 解答阅读理解型问题的基本模式:阅读理解应用.重点是阅读,难点是理解,关键是应用.阅读时要理解材料的脉络,要对提供的文字、符号、图形等进行分析,在理解的基础上迅速整理信息,及时归纳要点,挖掘其中隐含的数学思想方法,运用类比、转化、迁移等方法,构建相应的数学模式或把要解决的问题转化为常规问题.典型例题:整除类:例1、若一个正整数,它的各位数字是左右对称的,则称这个数是对称数. 如,都是对称数,最小的对称数是,但没有最大的对称数,因为数位是无穷的.(1) 若将任意一个四位对称数分解为前两位数表示的数和后两位数表示的数,请你证明:这两个数的差一定能被整除;(2) 设一个三位对称数为( ),该对称数与相乘后得到一个四位数,该四位数前两位所表示的数和后两位所表示的数相等,且该四位数各位数字之和为,求这个三位对称数.例2、(2015重庆)如果把一个自然数各数位上数字从最高位到个位依次排出一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是:6、4、7、4、6,从个位到最高排出的一串数字也是:6、4、7、4、6,所64746是“和谐数”.再如:33,181,212,4664,都是“和谐数”.(1)请你直接写出3个四位“和谐数”,猜想任意一个四位“和谐数”能否被11整除,并说明理由;(2) 已知一个能被11整除的三位“和谐数”,设个位上的数字为x(,x为自然数),十位上的数字为y,用含有x的式子表示y.例3、定义:如果M个不同的正整数,对其中的任意两个数,这两个数的积能被这两个数的和整除,则称这组数为M个数的祖冲之数组 如为两个数的祖冲之数组,因为能被整除;又如为三个数的祖冲之数组,因为能被整除,能被整除,能被整除(1)我们发现,3和6,4和12,5和20,6和30,都是两个数的祖冲之数组;由此猜测和 组成的数组是两个数的祖冲之数组,请证明这一猜想(2)若是三个数的祖冲之数组,求满足条件的所有三位正整数 类型二:方程与不等式例4、设,是整数,且,如果存在整数,使得,则称整除,记作.例如:,;,;,.(1)若,且为正整数,则的值为 ;(2)若,且为整数,满足,求的值.例5、进位数是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数目称为基数,基数为n,即可称n进制。现在最常用的是十进制,通常使用10个阿拉伯数字09进行记数,特点是逢十进一,对于任意一个用n()进制表示的数,通常使用n个阿拉伯数字进行记数,特点是逢n进一,我们可以通过以下方式把它转化为十进制:例如:五进制数,记作,七进制数,记作。(1)请将以下两个数转化为十进制:=_,=_(2)若一个正数可以用七进制表示为,也可以用五进制表示为,请求出这个数并用十进制表示例6、定义新运算:对于任意实数,都有,等式右边是通常的加法、减法及乘法运算,比如:;=(1)求的值;(2)若且, 求的取值范围;(3)若为能被4整除的正整数,为正奇数(),请证明:能被2整除,但不能被4整除.例7、对x,y定义一种新运算,规定:T(x,y) (其中a,b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)b,已知T(1,1)2,T(4,2)1(1)求a,b的值;(2)若关于m的不等式组恰好有3个整数解,求实数p的取值范围例8、对于实数x,y我们定义一种新运算(其中a,b均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为,其中x,y叫做线性数的一个数对若实数x,y都取正整数,我们称这样的线性数为正格线性数,这时的x,y叫做正格线性数的正格数对(1) 若,则_
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业服务合同模板范例
- 个人房屋租赁合同法律解析
- 工业厂房维修合同范本
- 小微企业劳动合同管理操作指南
- 境外投资合同范本与风险防控
- 2025年袜业产品研发生产合同协议
- 2025年蔬菜种植基地采摘合同协议
- 超导材料专利分许可合同
- 四川农村新建房屋2025年包工包料合同协议范本
- 皮革公司营销方案
- 互联网广告行业广告投放策略优化方案
- 装修案例汇报
- 非新生儿破伤风诊疗规范(2024年版)解读
- 6大国工匠百炼成器教案-蓝色
- 食品生产企业产品贮存运输及交付管理制度
- DB3301-T 65.11-2024 反恐怖防范系统管理规范 第11部分:医院
- 2025届广东省深圳市深圳实验学校初中部联考化学九年级第一学期期末综合测试试题含解析
- 第15节 辽宋夏金元的文化和科技 知识清单 高三统编版(2019)历史一轮复习(选必融合)
- 电子商务导论 记分作业资料-上海开大参考资料
- DZ∕T 0215-2020 矿产地质勘查规范 煤(正式版)
- 氨甲环酸制备工艺
评论
0/150
提交评论