第十章 天然气燃料电池.doc_第1页
第十章 天然气燃料电池.doc_第2页
第十章 天然气燃料电池.doc_第3页
第十章 天然气燃料电池.doc_第4页
第十章 天然气燃料电池.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第十章 天然气燃料电池101 概 论1011 燃料电池概论当今能以工业规模生产的电力有火电、水电、核电等三种。而被誉为第四种电力的燃料电池发电,也正在美、日等发达国家崛起,以急起直追的势头快步进入能以工业规模发电的行列。燃料电池是一种化学电池,它利用物质发生化学反应时释放出的能量,直接将其变换为电能。如图101所示。从这一点看,它和其他化学电池如锰干电池、铅蓄电池等是类似的。但是,它工作时需要连续地向其供给活物质(起反应的物质)燃料和氧化剂,这又和其他普通化学电池不大一样。由于它是把燃料通过化学反应释出的能量直接变为电能输出,所以被称为燃料电池。具体地说,燃料电池是利用水的电解的逆反应的“发电机”。它由正极、负极和夹在正负极中间的电解质板所组成。最初,电解质板是利用电解质渗入多孔的板而形成,现在正发展为直接使用固体的电解质。工作时向负极供给燃料(氢),向正极供给氧化剂(空气)。氢在负极分解成正离子H+和电子e。氢离子进入电解液中,而电子则沿外部电路移向正极。用电的负载就接在外部电路中。在正极上,空气中的氧同电解液中的氢离子吸收抵达正极上的电子形成水。这正是水的电解反应的逆过程。利用这个原理,燃料电池便可在工作时源源不断地向外部输电,所以也可称它为一种“发电机”。与一般电池一样,燃料电池是由阴极、阳极和电解质构成。图102给出了典型的(单个)燃料电池的构造。 图101 燃料电池直接发电与 图102 燃料电池的构造示意传统间接发电的比较燃料电池的历史可以追溯到19世纪,确切地说是始于1839年英国人格罗夫(WGrove)的研究。格罗夫使用两个铂电极电解硫酸时注意到,析出的气体(氢和氧)具有电化学活性,并在两极产生约1V的电势差。1894年,奥斯特瓦尔德(WOstwald)从热力学理论上证实,燃料的低温电化学氧化优于高温燃烧,电化学电池的能量转换效率高于热机。热机效率受卡诺(Carnot)循环限制,而燃料电池的效率不受卡诺循环限制。20世纪初,人们就期望将化石燃料的化学能直接转变为电能。一些杰出的物理化学家,如能斯特(Nernst)、哈伯(Harber)等,对直接碳氧燃料电池做了许多努力,但他们的研究受到当时材料技术水平的限制。1920年以后,由于在低温材料性能研究方面的成功,对气体扩散电极的研究重新开始。1933年,鲍尔(Baur)设想一种电化学系统:在室温下,用碱性电解质,以氢为燃料。英国人培根(FBacon)对包括多孔电极在内的碱式电极系统进行了研究。20世纪50年代,培根成功地开发了多孔镍电极,并制造了第一个千瓦级碱性燃料电池系统。培根的研究成果是后来美国宇航局(NASA)阿波罗(Apollo)计划中燃料电池的基础。1958年,布劳尔斯(Broers)改进了熔融碳酸盐燃料电池系统,并取得了较长的预期寿命。由于空间竞赛,燃料电池在50、60年代得到了广泛关注。1968年美国宇航局完成了阿波罗登月计划。此后对燃料电池的研究热了起来。低催化剂载量的多孔碳基材料降低了陆地上使用的氢空气燃料电池的成本,使人们开始热衷于电动机动车的研制。1970年,考尔迪什(KKordesch)装配了以氢空气碱性燃料电池为动力的4座位轿车,并实际运行了3年。因为宇航项目数量上的减少,燃料电池的研究开发经历了短时期的低潮。由于70年代初的石油危机,燃料电池的研究开发出现了新的浪潮,研究项目逐年增多,并且注重能源利用率及环境影响。到了70年代中期,燃料电池技术的发展有了新动向。已在空间应用方面达到最高水平的碱性燃料电池,逐步被磷酸燃料电池的广泛研究开发所取代,因为磷酸燃料电池更适用于燃料电池发电站。与此同时,由于碳氢化合物是首选燃料,还必须开发重整技术。磷酸燃料电池的功率已达到兆瓦级,寿命也已达到实用要求。由于在电能和热能方面的高效率,80年代熔融碳酸盐和90年代固体氧化物燃料电池都得到了快速发展。但寿命仍然是高温燃料电池必须解决的难题。燃料电池在90年代最大的突破是质子交换膜燃料电池的发展。质子交换膜燃料电池虽然早在60年代就已出现,却未被用到空间技术上,对其重视程度也不及碱性燃料电池。随着对新型膜和催化剂的不断研究,已研制出了具有高功率密度的膜。从历史上看,燃料电池技术的发展未能竞争过快速发展的燃烧发电技术,是因为燃料电池发展过程中相应的结构材料的发展是分阶段、时断时续进行的,未能使人们清楚地认识到对燃料电池的需求,而只醉心于使用廉价的化石燃料,大力开发火力发电技术,而中止了燃料电池的研究开发。目前,燃料电池必须解决的问题是提高电池寿命、降低昂贵的膜及排热、排水等辅助系统的价格。1012 燃料电池的特性10121 燃料电池的优点燃料电池之所以受世人瞩目,是因为它具有其它能量发生装置不可比拟的优越性,主要表现在效率、安全性、可靠性、清洁度、良好的操作性能、灵活性及未来发展潜力等方面。1 高效率从理论上讲,燃料电池可将燃料能量的90转化为可利用的电和热。磷酸燃料电池设计发电效率(HHV)42,目前接近46。据估计,熔融碳酸盐燃料电池的发电效率可超过60,固体氧化物燃料电池的效率更高。这样的高效率是史无前例的。而且,燃料电池的效率与其规模无关,因而在保持高燃料效率时,燃料电池可在其半额定功率下运行。燃料电池发电厂可设在用户附近,这样也可大大减少传输费用及传输损失。燃料电池的另一特点是在其发电的同时可产生热水及蒸汽。其电热输出比约为1.0,而汽轮机为0.5。这表明在相同电负荷下,燃料电池的热载为燃烧发电机的2倍。2可靠性与燃烧涡轮机循环系统或内燃机相比,燃料电池的转动部件很少,因而系统更加安全可靠。燃料电池从未发生过像燃烧涡轮机或内燃机因转动部件失灵而发生恶性事故。燃料电池系统发生的惟一事故就是效率降低。3良好的环境效益当今世界的环境问题已到了威胁人类生存和发展的程度,这并非危言耸听。据统计,本世纪经历了两次世界大战,但因环境污染造成的死亡人数却超过了战争的死亡人数。而环境污染的发生,多数是由于燃料的使用,尤其大气污染物绝大多数来自于各种燃料的燃烧过程。因此,解决环境问题的关键是要从根本上解决能源结构问题,研究开发清洁能源技术。而燃料电池正是符合这一环境需求的高效洁净能源。普通火力发电厂排放的废弃物有颗粒物(粉尘)、硫氧化物(SO2)、氮氧化物(NOx)、碳氢化合物(HC)以及废水、废渣等。燃料电池发电厂排放的气体污染物仅为最严格的环境标准的十分之一,温室气体CO2的排放量也远小于火力发电厂。燃料电池中燃料的电化学反应副产物是水,其量极少,与大型蒸汽机发电厂所用大量的冷却水相比,明显少得多。燃料电池排放的废水不仅量少,而且比一般火力发电厂排放的废水清洁得多。因而,燃料电池不仅消除或减少了水污染问题,也无需设置废气控制系统。由于没有像火力发电厂那样的噪声源,燃料电池发电厂的工作环境非常安静。又由于不产生大量废弃物(如废水、废气、废渣),燃料电池发电厂的占地面积也少。燃料电池是各种能量转换装置中危险性最小的。这是因为它的规模小,无燃烧循环系统,污染物排放量极少。燃料电池的环境友好性是使其具有极强生命力和长远发展潜力的主要原因。4良好的操作性能燃料电池具有其它技术无可比拟的优良的操作性能,这也节省了运行费用。动态操作性能包括对负荷的响应性、发电参数的可调性、突发性停电时的快速响应能力、线电压分布及质量控制。燃料电池发电厂的电力控制系统可以分别独立地控制有效电力和无效电力。控制了发电参数,就可以使线电压及频率的输送损失最小化,并减少储备电量及电容、变压器等辅助设备的数量。通常,电厂增加发电容量时,变电所的设备必须升级,否则会使整个电力系统的安全稳定性降低。而燃料电池发电厂则不必将变电所设备升级,必要时可将燃料电池组拆分使用。5灵活性灵活性是指发电厂计划与容量调节的灵活性。这对电力公司及用户来说是最关键的因素及经济利益所在。燃料电池发电厂可在2年内建成投产,其效率与其规模无关,可根据用户需求而增减发电容量。6发展潜力燃料电池在效率上的突破,使其可与所有的传统发电技术竞争。作为正在发展中的技术,磷酸燃料电池已有了令人鼓舞的进展。熔融碳酸盐燃料电池和固体氧化物燃料电池,将在未来1520年内产生飞跃性进步。相比之下,其它传统的发电技术,如汽轮机、内燃机等,由于价格、污染等问题,其发展似乎走到了尽头。10122 燃料电池存在的问题 燃料电池有许多优点,人们对其将成为未来主要能源持肯定态度。但就目前来看,燃料电池仍有很多不足之处,使其尚不能进入大规模的商业化应用。主要归纳为以下几个方面:(1) 市场价格昂贵;(2) 高温时寿命及稳定性不理想;(3) 燃料电池技术不够普及;(4) 没有完善的燃料供应体系。 1013 燃料电池的分类燃料电池按照不同的分类标准,有不同的名称。如以工作温度来划分,有低温、中温、高温和超高温燃料电池。但目前最常用的方法还是以燃料电池中最重要的组成部分即电解质来划分。电解质的类型决定了燃料电池的工作温度、电极上所采用的催化剂以及发生反应的化学物质。按电解质划分,燃料电池大致可分为五类:碱性燃料电池(Alkaline Fuel Cell、缩写AFC)、磷酸型燃料电池(Phosphorous Acid Fuel Cell、缩写PAFC)、固体氧化物燃料电池(Solid Oxide Fuel Cell 、缩写SOFC)、熔融碳酸盐燃料电池(Molten Carbonate Fuel Cell 、缩写MCFC)和质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell 、缩写PEMFC)。下表列出了上述五种燃料电池的主要特点。表101 主要燃料电池及其特性类型电解质导电离子工作温度燃料氧化剂技术状态可能应用领域碱性KOHOH50200纯氢纯氧高度发展高效航天特殊地面应用磷酸H3PO4H+100200重整气空气高度发展成本高余热利用价值低特殊需求区域性供电熔融碳酸盐(Li,K)CO3CO32650700净化煤气、天然气、重整气空气正进行现场实验需延长寿命区域性供电固体氧化物氧化钇稳定的氧化锆O29001000净化煤气、天然气空气电池结构选择开发廉价制备技术区域供电联合循环发电质子交换膜全氟磺酸膜H+室温100氢气、重整氢空气高度发展需降低成本电汽车潜艇推动可移动动力源102 各类燃料电池1021 碱性燃料电池碱性燃料电池(AFC)是以KOH水溶液为电解质的燃料电池。KOH水溶液的质量分数一般为30% 45%,最高可达85%。在碱性电解质中,氧化还原比在酸性电解质中容易。由于电解质是循环使用,AFC电池堆多为单极结构(PAFC和MCFC的电解质是固定的,电池堆为双结构)。在无CO、CO2时,阳极氧化反应为:2H2 4OH 4 H2O 4e阴极上氧的还原反应为:O2 2H2O 4e 4 OH 电池反应为:2H2 O2 4 H2O 电能 热1022 磷酸燃料电池磷酸燃料电池(PAFC)是以磷酸为电解质的燃料电池。阳极通以富氢并含有CO2的重整气体,阴极通以空气,对CO2的承受力是PAFC的特征之一。PAFC适合于安装在居民区或用户密集区。高效、紧凑、无污染是其主要特征。它是目前最成熟和商业化程度最高的燃料电池。PAFC发生的电化学反应为: 阳极反应: H2 2H+ 2e阴极反应: O2 2H+2e H2O 电池反应: H2 O2 H2O 图103 PAFC反应示意图 1燃料 2空气 3水、空气或油 4阳极 5电解质(磷酸) 6阴极 7冷却板PAFC系统主要由四大部分构成: (1) 燃料处理系统:将化石燃料转化成富氢气体; (2 ) 电池堆:将富氢气体及空气转化成电流; (3 ) 换流器:将直流电转化成交流电; (4) 控制系统:控制所有部件,根据需要调整电或热负荷。PAFC的工作条件如下:(1) 工作温度。180210电池堆在较高温度下的效率低于较低温度的效率;(2) 工作压力。通常小容量电池堆采用常压,大容量电池堆用几百kPa。电池堆的效率随压力的增大而增加。(3) 冷却方法。空气、水(或水及蒸汽混合)、绝缘液体;(4) 燃料利用率。7080。(5) 氧化剂气体利用率。5060。空气中的氧含量为2l,而5060的利用率表明空气中5060的氧消耗在燃料电池中。(6) 反应气体组成。典型的重整气体中含H2 80,含C02 20,以及少量的CH4、CO和硫化物等杂质。PAFC的发电效率为4050。PAFC系统产生余热的量相当多,且清洁。包括电和热,系统的总效率可达80。尽管多年来对PAFC技术的开发已取得很有意义的成就,但在可靠性及寿命等方面仍需做深入的研究。1023 熔融碳酸盐燃料电池10231 熔融碳酸盐燃料电池工作原理熔融碳酸盐燃料电池(MCFC)。通常被称为第二代燃料电池,因为预期它将继磷酸燃料电池之后进入商业化阶段。MCFC的工作温度为600650,因而与低温燃料电池相比,有几个潜在优势。首先,在MCFC的工作温度下,燃料的重整,如天然气重整,能在电池堆内部进行,既降低了系统成本,又提高了效率;其次,电池反应的高温余热可用于工业加工或锅炉循环;第三,几乎所有燃料重整都产生CO,它可使低温燃料电池电极催化剂中毒,但却可成为MCFC的燃料。MCFC的缺点是在其工作温度下,电解质的腐蚀性高,阴极需不断供应CO2。MCFC的研究开发始于1950年。其后近半个世纪时间内,在电极反应机理、电池材料、电池性能、制造技术等方面,取得了许多进展,规模不断扩大,几年前即已达到l00 kW水平,目前已达到2502000 kW。与低温燃料电池相比,MCFC的成本和效率很有竞争力。PAFC和PEMFC都需要贵金属催化剂,重整富氢燃料中的CO也需要去除。而在高温,H2的反应活性高,可以使用非贵金属作电化学催化剂。提高反应温度虽使电池理论效率(GH)降低,但同时也降低了过电位损失,实104 MCFC反应原理图 际效率是提高了。MCFC的工作温度是600650足够产生有价值的余热,又不至于有过高的自由能损失(MCFC的理论开路电压比SOFC高100mV)。余热可被用来压缩反应气体以提高电池性能;用于燃料的吸热重整反应;用于锅炉,或用于供暖。MCFC的一个最主要优点是可以内部重整。甲烷的重整反应可以在阳极反应室进行,重整反应所需热量由电池反应提供。在内部重整(IR)MCFC中,空速较低,重整反应速率很适当。但硫和微量碳酸盐可使重整催化剂中毒。预期MCFC将继PAFC之后5年进入市场。这5年间隔对于MCFC技术发展及用户对燃料电池的认可,都是重要的。尽管MCFC在反应动力学上有明显的优势,但其高温运行带来的熔盐腐蚀和密封等问题,阻碍了它的快速发展。MCFC中的电化学反应为:阳极反应:H2 CO32 H2O CO2 2e 阴极反应:O2 CO2 2e CO3 2电池反应:H2 O2 CO2(c) H2O CO2(a)式中c、a分别表示阴、阳极。CO不直接参与电极反应,但通过CO变换反应生成H2。除了H2和O2反应生成H2O,式中还显示了CO2从阴极向阳极的转移。阴极CO2的来源有以下几个途径:(1)极尾气循环到阴极;(2)阳极尾气燃烧后,与阴极进气混合;(3)电池堆外CO2源。10232 燃料内部重整传统MCFC使用外部重整器。内部重整MCFC则没有外部重整器,重整反应在电池堆内部进行。内部重整的方式有两种,间接内部重整(IIR)和直接内部重整(DIR)。不同的重整方式如图105所示。在间接内部重整中,重整室与阳极反应室是分开的,但紧密相邻,电极反应放热供给吸热重整反应。间接内部重整的优点是重整室和阳极室没有物理影响,缺点是甲烷转化率不及直接内部重整,在直接内部重整中,重整反应在阳极室进行,阳极消耗H2,减少H2分压,促使甲烷转化率提高。在内部重整MCFC中,重整反应热量直接有电极反应供给,不需要热交换器。电极反应产生的H2O也参与重整反应和水气置换反应(即:COH2O CO2H2),促使生成更多的氢气。外部重整器的温度为800 900,甲烷的理论转化率能达到95% 99%(气碳摩尔比为2.53.0)。MCFC内部温度650,甲烷理论转化率85%(气碳摩尔比为2.5),但在实际系统中接近100%。650时,甲烷重整反应是以MgO或LiAlO2为载体的镍催化剂。MCFC的常用燃料是天然气,也可以用其它燃料,如甲醇、丙烷、人工煤气等。10233 MCFC的运行图106所示为天然气燃料内部重整MCFC流程示意图。天然气经脱硫、预热后,进入MCFC电池堆阳极室,进行重整反应和电极反应。阳极图105 MCFC不同类型重整方式a 直接内部重整; b间接内部重整; c外部重整图106 天然气燃料内部重整MCFC流程示意图1 天然气 2脱硫 3压缩机 4催化重整 5回热式换热器 6IRMCFC 7催化燃烧器 8强热器 9锅炉 10冷却器 11气水分离器 12空气预热 13空气 14鼓风机 15排气管尾气(主要含CO2、H2O和一部分未反应的燃料)经换热、冷凝去除水分,进入催化燃烧室,与空气燃烧,向阴极供应氧化气体(O2和CO2)。电池堆工作温度约为650,常压,电流密度为160mAcm2,单电池电压0.75V。燃料利用率75%,电池效率大于50%,加压运行,性能提高。1024 固体氧化物燃料电池 固体氧化物燃料电池(SOFC)适用于大型发电厂及工业应用。在所有燃料电池中,SOFC的工作温度最高,约1000。在这样高的温度下,燃料能迅速氧化并达到热力学平衡,可以不使用贵金属催化剂。燃料在电池内重整。由于固体氧化物电解质气体渗透性低,电导率小,开路时SOFC电压可达到理论值的96。与MCFC相比,SOFC的内部电阻损失小,可以在电流密度较高的条件下运行,燃料利用率高,也不需要CO2循环,因而系统更简单。由于SOFC运行温度高,其耐受硫化物的能力比其它燃料电池至少高两个数量级。因而可以使用高温除硫工艺,有利于节能。而其它类型燃料电池,为了使硫含量降至10mg/m3以下,需使用低温除硫工艺。SOFC对杂质的耐受能力,使其能使用重燃料,如柴油、煤气。特别是,SOFC可以与煤气化装置联接,电池反应放热可以用于煤的气化。 氧化物电解质很稳定,不存在MCFC中电解质的损失问题,其组成也不受燃料和氧化气体成分的影响。由于没有液相存在,没有保持三相界面的问题,也没有淹没电极微孔、覆盖催化剂的问题。SOFC可以承受超载、低载,甚至短路。与MCFC相比,SOFC的一个缺点是自由能损失,其开路电压比MCFC低100mV。因此,除非极化和欧姆损失相当低,SOFC的发电效率比MCFC低,一般低6。但这部分效率损失可以由SOFC高质量的余热补偿。另外,由于工作温度高,SOFC对材料的要求高。中温(650 800)SOFC正在研究中。SOFC工作时,电子由阳极经外电路流向阴极,氧离子(O2)经电解质由阴极流向阳极。图107为SOFC工作原理示意图。 图107 SOFC电池反应以重整气体(H2和CO混合物)为燃料时,电池反应为阳极 H2 O2 H2O CO O2 CO2阴极 1/2(a b)O2 (a b)e (a b)O2电池反应 1/2(a b)O2 a H2 b CO a H2O b CO2SOFC一般在1000运行。在这个温度下,反应的自由能变化比低温时小得多。对于H2的氧化反应,1200K时,吉布斯(Gibbs)自由能变化为181.3 kJ/ mol,300K时为228.4 kJ/ mol。而反应焓变基本上与温度无关。因而高温时。理论效率(G/H)较低。由于电池有极化及欧姆损失,实际效率还要低。保持电池温度,需要对电池堆冷却。去除的热量的数值等于反应焓变与发电能量的差值。这部分热量可继续用于汽轮机发电,也可以用于供热。热力学分析表明,SOFC的总效率可达到80%。1025 质子交换膜燃料电池 质子交换膜燃料电池(Proton Exchange Membrane FuelCell),简称PEMFC,也有人称之为聚合物电解质膜燃料电池(Polymer Electrolyte Membrane Fuel Cell),还有一些其它的叫法。常见的叫法还有,聚合物电解质燃料电池PEFC(Polymer Electrolyte Fuel Cell);固体聚合物电解质燃料电池SPEFC(Solid Polymer Electrolyte Fuel Cell);固体聚合物燃料电池SPFC(Solid Polymer Fuel Cell)。本书采用最为常用的名称,质子交换膜燃料电池,即PEMFC。 不管用什么名称,这种燃料电池都是以固体电解质膜做电解质。这种膜不是通常意义上的导体,不传导电子,是氢离子的优良导体。目前用的成膜材料是在类似聚四氟乙烯(Teflon)的氟碳聚合物骨架上,加上磺酸基团。磺酸分子固定在骨架上不能移动,但H可以在膜内自由移动。聚合物膜中酸的量用当量(EW)表示,即含有l mol磺酸的聚合物干重。膜的EW是固定的,在燃料电池运行中不变。通常低EW的膜性能较好。 PEMFC的主要优点有: (1) 固体电解质无腐蚀; (2) 电池制造简单; (3) 对压力变化不敏感; (4) 电池寿命长。 PEMFC的主要缺点是: (1) 膜的价格高,供应商少; (2) 膜的水管理难度大; (3) 对CO敏感; (4) 催化剂成本高。PEMFC最早是在20世纪60年代,由通用电气(GE)公司为美国宇航局开发的,与其它燃料电池相比,其优点是能量密度高,不使用流动的、腐蚀性的电解质,结构简单。最初,由于电解质膜稳定性差,电池堆寿命很短。1964年,通用电气公司开发了新型膜,用聚乙烯双乙烯基苯与氟碳基底交联,使膜的寿命达到500h。通用电气公司研制的l kW PEMFC作为辅助电源,先后7次用于美国基米尼(Gemini)太空发射试验。60年代中期,通用电气公司试验杜邦(DuPont)的Nafion膜,PEMFC的优点又增加了长寿命和低维护。1968年通用电气公司将Nafion膜用于卫星发射试验。当时,美国宇航局已选择AFC用于阿波罗计划,这一选择使PEMFC在太空中的应用搁置了20年。到1984年以前,除了美国洛斯阿莫斯(Los Alamos)国家实验室(LANL)的少量工作,PEMFC的研究基本处于停滞状态。1983年,加拿大国防部(DND)认识到PEMFC可能满足军队对能源的需求及商用前途。1984年,保拉德公司(Banard)在加拿大国防部的资助下,开始研究开发PEMFC。其后,特别是进入20世纪90年代以后,PEMFC快速发展。戴姆勒奔驰汽车公司(DaimlerBenz)到1998年已研制了四代PEMFC动力汽车。丰田于1997年推出了全燃料电池动力(FCEV)汽车。PEMFC电站功率已达到250kW。PEMFC在便携式电源、微型电器电源、潜艇电源等方面的应用,正在发展。10251 工作原理 图108是PEMFC剖面示意图。膜电极(MEA,Membrane Electrode Assembly)是PEMFC的心脏部位。H2在阳极氧化成H并放出电子, H2 H + 2eH离子通过膜转移到阴极,与O2和相邻电池的电子反应生成水, 1/2 O2 + 2 H + 2e H2O电池反应为 H2 + 1/2 O2 H2O图108 PEMFC剖面图 膜的作用是双重的,作为电解质提供氢离子通道,作为隔膜隔离两极反应气体。优化膜的离子和水传输性能及适当的水管理,是保证电池性能的关键。膜脱水降低质子电导率;水分过多淹没电极,这两种情况都将导致电池性能下降。PEMFC一般都有石墨双极板,与膜电极紧密接触。双极板上刻有许多纹路,向电极传送反应气体。其导电性能好,并可向相邻电池传送电流。10252 电极及电解质膜 PEMFC电极是典型的气体扩散电极。衬底是涂有憎水层的多孔性碳布。到目前为止,铂是H2氧化和O2还原的最好催化剂。最早的膜电极是直接将铂黑与起疏水作用和粘结作用的聚四氟乙烯微粒混合后,热压到质子交换膜上,Pt载量高达10mgcm2。使用碳黑作载体,催化剂表面积提高了,载量降低。20世纪80年代中期,Pt载量降为4mgcm2。由于电极反应仅在催化剂反应气体质子交换膜三相界面上进行,只有位于质子交换膜界面上的铂微粒才有可能成为催化电极反应的活性中心,Pt的有效利用率只有1020。 到80年代中后期,洛斯拉莫斯国家实验室采用Nafion质子交换聚合物溶液浸渍PtC多孔气体扩散电极,再热压到质子交换膜上形成膜电极。该方法扩展了三相反应区域,大大提高了Pt利用率,Pt载量降低了10倍,仅为0.4mgcm2,但仍保持了高载量电极的性能。1992年洛斯拉莫斯国家实验室对该方法进行了改进,Pt载量进一步降低到0.13mgcm2。目前,实验室研究Pt载量已降到0.1mgcm2。加拿大保拉德电力网公司的第五代电池堆,阴极载量Pt 0.6mgcm2,阳极载量Pt 0.25mgcm2Ru 0.12mgcm2,在电流密度600mAcm2时,单电池电压为0.7V,相当于Pt 1.5gkW1。最早用于PEMFC的聚合物电解质是碳氢化合物型,如交联的聚乙烯双乙烯基苯磺酸和磺化酚醛。由于CH键断裂,特别是在官能团的一H位置,碳氢型聚合物不稳定。使用氟代聚苯乙烯,如全氟聚苯乙烯磺酸后,PEMFC的寿命提高了45倍。现在一般使用杜邦公司生产的Nafion质子交换膜。Nafion是全氟型聚合物,其结构式为:Nafion有异常优越的化学和热学稳定性,在125以下,在强碱、强酸及强氧化还原环境中性能稳定。膜的厚度一般为50175m,使用方便安全。其导电行为类似于酸溶液,所以使用温度应低于水的沸点。膜的导电性能相当于l molL1硫酸。103 家庭用燃料电池1031 家用燃料电池的概念家用燃料电池是从城市燃气等化石燃料制得氢气,氢气与空气中的氧气发生电化学反应而产生电的发电系统。因为发电的同时产生的废热可以得到热水,所以表现为“能发电的热水器”。发电的核心部分采用质子交换膜燃料电池PEMFC。PEMFC具有如下优点: 易得到高电流密度,易小型化、轻量化; 可在常温下发电,运行温度在100以下,使得开停简单方便; 不在满负荷下也可高效发电; 能经受短时间的超负荷运行。因此除家庭外,还可作为电动汽车的电源和携带式电源。特别是在汽车方面的巨大投资,可以说是能够期待其成本下降的燃料电池。家用燃料电池系统的概念图如图109所示。图109 家用燃料电池系统示意图作为燃料的城市燃气与水混合,在改质器中变换成氢。称为水蒸气改质反应。如下式所示: CH4 2H2O CO2 2H2反应为吸热反应,需从外部间接加热,启动时间较长,但是可将含燃料电池的关闭燃气的剩余氢气作为加热能源,所以说可以构成改质效率、发电效率高的系统的反应方式。另外,也有部分氧化改质方式。 CH4 O2 CO2 2H2 (部分氧化改质反应)这个反应是放热

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论