

免费预览已结束,剩余15页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高二数学双曲线定义 标准方程 几何性质知识精讲一. 本周教学内容: 双曲线定义、标准方程、几何性质知识点(一)双曲线的定义 1. (1)图示:取一拉链,在拉开两边上各选一点,分别固定在F1、F2上,|F1F2|2c,即|PF1|PF2|2a,得到的图形,我们称为双曲线一支(加绝对值两支) 3. 定义:平面内与两定点F1、F2的距离之差的绝对值等于常数c小于|F1F2|的点的轨迹叫双曲线。 (1)焦点:F1、F2,焦距:|F1F2| (2)定义重点: 绝对值 小于|F1F2| 若去掉则为一支;去掉,2a2c射线,2a2c无曲线,2a0是F1F2的中垂线。(二)双曲线的标准方程 (1)推导:建系;写出集合;坐标化;化简 图象特征: 注意 1. 位于标准位置,才能有标准方程; 3. 判断双曲线焦点的位置由函数的正负决定(不比大小),若x2的函数为正,则焦点在x轴上,反之则在y轴上。 4. 记住a、b、c的关系: 一般地:第二定义:平面内与一个定点的距离和它到一条定直线的距离的比是常数线叫做双曲线的准线,这个常数e叫做离心率。 理解: 第二定义的隐含条件:定点在直线外,否则轨迹是除去交点的两条相交直线。 双曲线的离心率的定义是:双曲线上一点到焦点的距离与到相应准线的距离的比。(几何意义) 2. 焦半径及焦半径公式 定义:双曲线上一点到焦点的距离叫做双曲线上这点的焦半径。 (4)等轴双曲线: 曲线。 渐近线:(定义:若曲线上的点到某一直线的距离为d,当点趋向于无穷远时,d能趋近于0,则这条直线称为该曲线的渐近线) 例1. 一炮弹在某处爆炸,在F1(5000,0)处听到爆炸声的时间比在F2(5000,0)么样的曲线上,并求爆炸点所在的曲线方程。 解:6000(米),因此爆炸点在以F1、F2为焦点的双曲线上。 因为爆炸点离F1处比F2处更远,所以爆炸点应在靠近F2处的一支上。 设爆炸点P的坐标为(x,y),则 小结:远6000米,这是解应用题的第一关审题关;根据审题结合数学知识知爆炸点所在的曲线是双曲线,这是解应用题的第二关文化关(用数学文化反映实际问题);借助双曲线的标准方程写出爆炸点的轨迹方程是解决应用题的第三关数学关(用数学知识解决第二关提出的问题)。 例2. 求一条渐近线方程是3x4y0,一个焦点是(4,0)的双曲线标准方程,并求双曲线的离心率。 解: 小结: 例3. 等轴双曲线的两个顶点分别为A1、A2,垂直于双曲线实轴的直线与双曲线交于M、N两点,求证: (1)MA1NMA2N180; (2)MA1A2N,MA2A1N。 证明: 如图所示,易求得: 又NA1x,NA2x均为锐角, MA1A2N。同理可证MA2A1N。 小结:利用对称性把要证等式转化为证明NA2xNA1x90为本题证明的突破口,体现转化意识。 例4. 证明:程分别是 双曲线上任一点到焦点的距离与它到相应准线的距离的比等于这个双曲线的离心率, 小结:|PF1|、|PF2|都是双曲线上的点到其焦点的距离,通常称作焦半径。 例5. AB的中点,求直线AB的方程。 解法一:设A、B的坐标分别为(x1,y1)、(x2,y2), ,得 P是线段AB的中点, 直线AB的斜率为2。 解法二: A、B为双曲线上的点, 小结:此题也可设直线的斜率为k,然后待定k的值。 例6. 设点P到点M(1,0)、N(1,0)的距离之差为2m,到x轴、y轴的距离之比为2,求m的取值范围 解:设点P的坐标为(x,y),由题意得 点P、M、N三点不共线 点P在以M、N为焦点、实轴长为2|m|的双曲线上。 小结: 例7. 曲线离心率e的取值范围。 解: 双曲线经过点C、D,且以A、B为焦点,由双曲线的对称性知C、D关于y轴对称。 高。 小结: 例8. 标为4,求双曲线的方程。 解法1 解法2 解法3 例9. 焦点在x轴上的椭圆C的一顶点为B(0,1),右焦点到直线m: (1)求C的方程; (2)是否存在斜率k0的直线l与C交于两点M、N,使|BM|BN|?若存在,求出k的取值范围;若不存在,说明理由。 解: 小结:义相同。 1. 过双曲线的一个焦点作x轴的垂线,求垂线与双曲线的交点到两焦点的距离。 2. 已知双曲线的离心率为2,求它的两条渐近线的夹角。 3. 在面积为1的PMN中,建立适当坐标系,求以M、N为焦点且过点P的双曲线方程。 4. 已知椭圆和双曲线有相同的焦点,P是两条曲线的一个交点,求的值。 5. 已知椭圆及点B(0,2),过左焦点F1与点B的直线交椭圆于C、D两点,椭圆的右焦点为F2,求CDF2的面积。 6. P为椭圆上任意一点,F1为它的一个焦点,求证以焦半径F1P为直径的圆与以长轴为直径的圆相切。 7. 已知两定点A(1,0),B(1,0)及两动点M(0,y1),N(0,y2),其中,设直线AM与BN的交点为P。 (1)求动点P的轨迹C的方程; (2)若直线与曲线C位于y轴左边的部分交于相异两点E、F,求k的取值范围。 8. 直线只有一个公共点,求直线l的方程。参考答案 1. 解:双曲线方程为, 13,于是焦点坐标为 设过点F1垂直于x轴的直线l交双曲线于 , 故垂线与双曲线的交点到两焦点的距离为。 2. 解:设实轴与渐近线的夹角为,则 两条渐近线的夹角为点评 (1)离心率e与。 (2)要注意两直线夹角的范围,否则将有可能误答为。 3. 解:以MN所在直线为x轴,MN的中垂线为y轴建立直角坐标系,设,(如图所示) 则 解得 设双曲线方程为, 将点 所求双曲线方程为 点评:选择坐标系应使双曲线方程为标准形式,然后采用待定系数法求出方程。 4. 解:P在椭圆上, 又点P在双曲线上, 、两式分别平方得 两式相减得, 5. 解:, 由 与椭圆有两个公共点,设为: 又点F2到直线BF1的距离 说明:本题也可用来解。 6. 略解1 设为椭圆上任意一点,则 又两圆半径分别为, ,故此两圆内切。 略解2 如图, 此两圆内切 7. 解:(1)由题意得AM的方程为,BN的方程为:。 两式相乘,得 (2)由 8. 解:由 (1) 此时直线l:x3与双曲线只有一个公共点(3,0); (2)当b0时,直线l方程为。 当 当恒成立, 此时直线l与双曲线必相交于两点。 综上所述,满
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省泉州市德化县2026届中考数学对点突破模拟试卷含解析
- 河南省三门峡灵宝市重点中学2026届中考试题猜想数学试卷含解析
- 农业合作社技术合作框架协议
- 投资管理顾问协议书
- 2025品牌专卖店合作合同协议
- 城市智慧交通系统集成与服务协议
- 2024年直流电弧炉项目项目投资需求报告代可行性研究报告
- 2025年旅游度假区景观设计市场需求与竞争分析报告
- 水污染防治重点项目资金申请报告:2025年政策实施与项目成效
- 传统食品行业2025年智能生产设备技术改造市场分析
- 人员异地办公管理办法
- 劳务派遣与服务协议
- 2025年新修订治安管理处罚法课件
- 消费者权益保护培训课件
- DB11T 2454-2025 职业健康检查质量控制规范 生物样本化学物质检测
- 提高服务意识培训课件
- 贸易公司员工职业操守行为准则制度
- 护理50项操作考核评分标准
- 电气安全基础知识安全培训
- 部门保密培训课件
- 电网技术改造及检修工程定额和费用计算规定2020 年版答疑汇编2022
评论
0/150
提交评论