已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.利用导数研究函数的单调性和极值1.(福建文)(本小题满分12分)已知函数且 (I)试用含的代数式表示; ()求的单调区间;w.w.w.k.s.5.u.c.o.m 2(2009江西文)(本小题满分12分)设函数 (1)对于任意实数,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围 3(陕西文)(本小题满分12分)已知函数求的单调区间; 若在处取得极值,直线y=m与的图象有三个不同的交点,求m的取值范围。4(天津文)(本小题满分14分)已知函数,其中()当时,求曲线在点处的切线方程;()当时,求的单调区间; 5.【高考江苏18】若函数在处取得极大值或极小值,则称为函数的极值点。已知是实数,1和是函数的两个极值点(1)求和的值;(2)设函数的导函数,求的极值点; 6. (2013年高考陕西卷(文)已知函数. () 求f(x)的反函数的图象上图象上点(1,0)处的切线方程; () 证明: 曲线y = f (x) 与曲线有唯一公共点. 7(2013年高考北京卷(文)已知函数.()若曲线在点)处与直线相切,求与的值.()若曲线与直线 有两个不同的交点,求的取值范围.8.(福建卷(文)已知函数(,为自然对数的底数).(1)若曲线在点处的切线平行于轴,求的值;(2)求函数的极值;1. (福建文)(本小题满分12分)已知函数且 (I)试用含的代数式表示; ()求的单调区间;w.w.w.k.s.5.u.c.o.m (I)依题意,得 由得()由(I)得( 故 令,则或 当时, 当变化时,与的变化情况如下表: +单调递增单调递减单调递增由此得,函数的单调增区间为和,单调减区间为由时,此时,恒成立,且仅在处,故函数的单调区间为R当时,同理可得函数的单调增区间为和,单调减区间为综上:当时,函数的单调增区间为和,单调减区间为;当时,函数的单调增区间为R;当时,函数的单调增区间为和,单调减区间为2(2009江西文)(本小题满分12分)设函数 (1)对于任意实数,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围 解:(1) , 因为, 即 恒成立, 所以 , 得,即的最大值为(2) 因为 当时, ;当时, ;当时, ; 所以 当时,取极大值 ; 当时,取极小值 ; 故当 或时, 方程仅有一个实根. 解得 或.3(2009陕西文)(本小题满分12分)已知函数求的单调区间; 若在处取得极值,直线y=m与的图象有三个不同的交点,求m的取值范围。解析:(1)当时,对,有当时,的单调增区间为当时,由解得或;由解得,当时,的单调增区间为;的单调减区间为。(2)因为在处取得极大值,所以所以由解得。由(1)中的单调性可知,在处取得极大值,在处取得极小值。因为直线与函数的图象有三个不同的交点,又,结合的单调性可知,的取值范围是。(11天津文)4(本小题满分14分)已知函数,其中()当时,求曲线在点处的切线方程;()当时,求的单调区间;()解:当时,所以曲线在点处的切线方程为 ()解:,令,解得因为,以下分两种情况讨论: (1)若变化时,的变化情况如下表:+-+所以,的单调递增区间是的单调递减区间是。 (2)若,当变化时,的变化情况如下表:+-+所以,的单调递增区间是的单调递减区间是5.【2012高考江苏18】(16分)若函数在处取得极大值或极小值,则称为函数的极值点。已知是实数,1和是函数的两个极值点(1)求和的值;(2)设函数的导函数,求的极值点;解:(1)由,得。 1和是函数的两个极值点, ,解得。 (2) 由(1)得, , ,解得。 当时,;当时, 是的极值点。 当或时, 不是的极值点。 的极值点是2。(2013年高考陕西卷(文)6.已知函数. () 求f(x)的反函数的图象上图象上点(1,0)处的切线方程; () 证明: 曲线y = f (x) 与曲线有唯一公共点. 解:() f (x)的反函数,则y=g(x)过点(1,0)的切线斜率k=. .过点(1,0)的切线方程为:y = x+ 1 () 证明曲线y=f(x)与曲线有唯一公共点,过程如下. 因此, 所以,曲线y=f(x)与曲线只有唯一公共点(0,1).7(2013年高考北京卷(文)已知函数.()若曲线在点)处与直线相切,求与的值.()若曲线与直线 有两个不同的交点,求的取值范围.解:由,得. (I)因为曲线在点处与直线相切,所以 ,解得,. (II)令,得. 与的情况如下: 所以函数在区间上单调递减,在区间上单调递增,是的最小值. 当时,曲线与直线最多只有一个交点; 当时, , 所以存在,使得. 由于函数在区间和上均单调,所以当时曲线与直线有且只有两个不同交点.综上可知,如果曲线与直线有且只有两个不同交点,那么的取值范围是. 2013年高考福建卷(文)8.已知函数(,为自然对数的底数).(1)若曲线在点处的切线平行于轴,求的值;(2)求函数的极值;解:()由,得. 又曲线在点处的切线平行于轴, 得,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年绵阳辅警招聘考试真题含答案详解(巩固)
- 2024年宝鸡辅警招聘考试题库及参考答案详解
- 中国冲激式脱硫除尘机组 项目投资可行性研究报告
- 2025中国人寿保险股份有限公司平凉市中心支公司招聘6人笔试历年备考题库附带答案详解2套试卷
- 2025“才聚齐鲁成就未来”山东省科创集团有限公司权属企业招聘3人笔试历年难易错考点试卷带答案解析2套试卷
- 2018年高考文综真题(全国Ⅱ卷)
- 阿贝比长仪行业深度研究报告
- 中国发泡组合聚醚项目投资可行性研究报告
- 中国阳离子水溶性引发剂项目投资可行性研究报告
- 2025年物业管理委托合同范本
- 2025高三思想政治高考一轮复习资料
- 从探索到深化:基于可信数据空间的公共数据运营报告2025
- 2025年医学检验副高职称答辩题库及答案
- 安徽省合肥市46中学2026届九年级物理第一学期期中调研模拟试题含解析
- 2025年中华人民共和国治安管理处罚法知识竞赛题库及答案(共50题)
- 市属国企后备干部选拔试题(附答案)
- 教育学原理 第二版 课件 马工程 第1-5章 教育及其本质-第5章 人的全面发展教育
- 临床输血采血流程标准操作规范
- 高血压患者中医食疗指南及方案
- 2025-2026学年统编版(2024)七年级道德与法治上册全册教案(教学设计)
- 电价政策讲解课件
评论
0/150
提交评论