高中数学选修2-1新教学案:3.2立体几何中的向量方法(3)_第1页
高中数学选修2-1新教学案:3.2立体几何中的向量方法(3)_第2页
高中数学选修2-1新教学案:3.2立体几何中的向量方法(3)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3.2 立体几何中的向量方法(第 3 课时)【教学目标】1能用向量语言描述线线、线面、面面的平行与垂直关系;2能用向量方法判断空间线面平行与垂直关系.【重点】 用向量方法判断空间线面平行与垂直关系.【难点】 用向量方法判断空间线面平行与垂直关系. 【预习提纲】(根据以下提纲,预习教材第 105 页第 106 页) 1.用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(3)把向量的运算结果“翻译“成相应的几何意义.【基础练习】【典型例题】例1 如图,已知矩形和矩形所在平面互相垂直,点分别在对角线上,且,求证:平面【审题要津】证明:建立如图所示空间坐标系,设AB,AD,AF长分别为3a,3b,3cABCDEFxyzMN又平面CDE的一个法向量由得到因为MN不在平面CDE内所以NM/平面CDE【方法总结】例2 在正方体中,E,F分别是BB1,CD中点,求证:D1F平面ADE.【审题要津】证明:设正方体棱长为1,建立如图所示坐标系D-xyzA1xD1B1ADBCC1yzEF,因为所以所以平面【方法总结】 如图,在底面是菱形的四棱锥PABCD中, ,点E在PD上,且PE:ED= 2: 1.在棱PC上是否存在一点F, 使BF平面AEC?证明你的结论.该问为探索性问题,作为高考立体几何解答题的最后一问,用传统方法求解有相当难度,但使如果我们建立如图所示空间坐标系,借助空间向量研究该问题,不难得到如下解答:根据题设条件,结合图形容易得到:ABCDEPxyzF假设存在点F。又, 则必存在实数使得,把以上向量得坐标形式代入得 即有所以,在棱PC存在点F,即PC中点,能够使BF平面AEC。本题证明过程中,借助空间坐标系,运

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论